forked from 865699871/Cross_landscape_HOR_clustering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_pattern.py
162 lines (143 loc) · 7.12 KB
/
find_pattern.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
def reverse(kmer):
base_map = {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C', 'N': 'N', 'a': 'T', 't': 'A', 'c': 'G', 'g': 'C', 'n': 'N'}
sequence_list = []
for i in kmer[::-1]:
sequence_list.append(base_map[i])
new_sequence = ''.join(sequence_list)
return new_sequence
def main():
pattern_file = '/data/home/user/home/project/all_human/workdir/multi_pattern_tree/target_pattern.txt'
calculate_consensus = '/data/home/user/home/project/workdir/script/consensus_sequence.py'
pattern_list = []
with open(pattern_file, 'r') as f:
for line in f:
line = line.strip().split('\t')
seq = line[2].split('_')
pattern_list.append([line[0], line[1], seq])
for pattern in pattern_list:
cmd = 'mkdir -p /data/home/user/home/project/all_human/workdir/multi_pattern_tree/chr' \
+ pattern[0] + '_' + pattern[1]
os.system(cmd)
cmd = 'mkdir -p /data/home/user/home/project/all_human/workdir/multi_pattern_tree/chr' \
+ pattern[0] + '_' + pattern[1] + '/samples'
os.system(cmd)
pattern_length = len(pattern[2])
outdir = '/data/home/user/home/project/all_human/workdir/multi_pattern_tree/chr' \
+ pattern[0] + '_' + pattern[1]
input_sample_file = '/data/home/user/home/project/all_human/workdir/pattern_cluster/samples/' \
'sample_list_chr' + pattern[0] + '.txt'
input_sample = []
with open(input_sample_file, 'r') as f:
for line in f:
if line.startswith('CHM'):
input_sample.append([line.strip().split('\t')[0]])
else:
line = line.strip().split('\t')
input_sample.append([line[0], line[1]])
reverse_pattern = list(reversed(pattern[2]))
for sample in input_sample:
if sample[0].startswith('CHM'):
workdir = '/data/home/user/home/project/all_human/assembly_part/' + sample[0] + \
'/workdir/censeq/chr' + pattern[0]
monomer_file = workdir + '/out_monomer_seq.xls'
position_file = workdir + '/final_decomposition.tsv'
fasta_file = workdir + '/input_fasta.1.fa'
sample_name = sample[0] + '_H'
else:
workdir = '/data/home/user/home/project/all_human/assembly_part/' + sample[0] + '/' + \
sample[1] + '/workdir/censeq/chr' + pattern[0]
monomer_file = workdir + '/out_monomer_seq.xls'
position_file = workdir + '/final_decomposition.tsv'
fasta_file = workdir + '/input_fasta.1.fa'
sample_name = sample[0] + '_' + sample[1]
with open(monomer_file, 'r') as f:
line = f.readline()
mon_seq = line.strip().split('mon_seq\t')[1].split(' ')
target_pattern = {}
for i in range(len(mon_seq) - pattern_length + 1):
curr_seq = mon_seq[i: i + pattern_length]
if curr_seq == pattern[2] or curr_seq == reverse_pattern:
target_pattern[i] = ''
monomer_position = []
with open(position_file, 'r') as f:
for line in f:
line = line.strip().split('\t')
left = line[2]
right = line[3]
if line[1].endswith('\''):
status = '-'
else:
status = '+'
monomer_position.append([left, right, status])
with open(fasta_file, 'r') as f:
for line in f:
if line.startswith('>'):
continue
else:
cen_fa = line.strip()
for i in target_pattern.keys():
start = int(monomer_position[int(i)][0])
end = int(monomer_position[int(i)+pattern_length-1][1])
count = 0
for j in range(int(i), int(i)+pattern_length):
if monomer_position[j][2] == '+':
count += 1
if count == 0:
final_status = '-'
elif count == pattern_length:
final_status = '+'
else:
print('error')
print(left)
print(right)
return
if final_status == '+':
target_pattern[i] = [start, end, cen_fa[start:(end+1)]]
else:
target_pattern[i] = [start, end, reverse(cen_fa[start:(end+1)])]
with open(outdir + '/samples/' + sample_name + '_' + pattern[0] + '_' + pattern[1] + '.fa', 'w') as f:
if sample[0].startswith('CHM'):
for info in target_pattern.values():
f.writelines('>' + sample[0] + '_H_' + pattern[1] + '_' + str(info[0]) + '-' + str(info[1])
+ '_' + '\n')
f.writelines(str(info[2]) + '\n')
else:
for info in target_pattern.values():
f.writelines('>' + sample[0] + '_' + sample[1] + '_' + pattern[1] + '_' + str(info[0]) + '-'
+ str(info[1]) + '_' + '\n')
f.writelines(str(info[2]) + '\n')
cmd = 'cat ' + outdir + '/samples/*_' + pattern[0] + '_' + pattern[1] + '.fa >' + outdir + '/' + pattern[1] + \
'.fa'
print(cmd)
os.system(cmd)
cmd = 'kalign -i ' + outdir + '/' + pattern[1] + '.fa -o ' + outdir + '/' + pattern[1] + '.align.fa'
print(cmd)
os.system(cmd)
cmd = 'python ' + calculate_consensus + ' -i ' + outdir + '/' + pattern[1] + '.align.fa -o ' + outdir + \
'/' + pattern[1] + '.consensus.fa'
print(cmd)
os.system(cmd)
cmd = 'needle -asequence ' + outdir + '/' + pattern[1] + '.consensus.fa -bsequence ' + outdir + '/' + \
pattern[1] + '.fa -gapopen 10.0 -gapextend 0.5 -outfile ' + outdir + '/' + pattern[1] + \
'.pairwise.align.fa'
print(cmd)
os.system(cmd)
for n in range(2, 10):
process_needle = '/data/home/user/home/project/workdir/script/processNeedle.py'
recent_expand = '/data/home/user/home/project/workdir/script/recentExpand.py'
plot = '/data/home/user/home/project/workdir/script/Plot.py'
cmd = 'python ' + process_needle + ' -i ' + outdir + '/' + pattern[1] + '.pairwise.align.fa -n ' + \
str(n) + ' -o ' + outdir + '/'
print(cmd)
os.system(cmd)
cmd = 'python ' + recent_expand + ' -i ' + outdir + ' -f ' + '/' + pattern[1] + \
'.fa -n ' + str(n)
print(cmd)
os.system(cmd)
cmd = 'python ' + plot + ' -i ' + input_sample_file + ' -c ' + pattern[0] + ' -n ' + str(n) + ' -o ' + \
outdir
print(cmd)
os.system(cmd)
if __name__ == '__main__':
main()