forked from Ian916/HiCAT-human
-
Notifications
You must be signed in to change notification settings - Fork 0
/
normalHORnumber.py
236 lines (207 loc) · 9.33 KB
/
normalHORnumber.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import argparse
def main():
parser = argparse.ArgumentParser(description="Normal sample HOR numbers")
parser.add_argument("-i", "--all_sample_dir", help="All sample result path, required", required=True)
parser.add_argument("-n", "--base_number_file", help="Reads total base number", required=True)
parser.add_argument("-s", "--sample_file", help="The file record all sample names, required", required=True)
parser.add_argument("-m", "--HOR_matrix_file", help="matrix record all HOR numbers in each sample, from aggregate output", required=True)
parser.add_argument("-o", "--outdir", help="output directory", required=True)
parser.add_argument("-ref", "--ref_genome_size", help="reference human genome size (base number), default is the base number of chm13v2.0", default=3054815472, type=int, required=False)
parser.add_argument("-r", "--rare_ratio", help="exclude HORs with less frequency than this ratio in each sample, default is 0.1", default=0.1, type=float, required=False)
parser.add_argument("-u", "--plot_upper", help="mean fold-change upper bound in the output plot, default is 5", type=float, default=5, required=False)
args = parser.parse_args()
workdir = args.all_sample_dir
base_number_file = args.base_number_file
sample_file = args.sample_file
HOR_matrix_file = args.HOR_matrix_file
outdir = args.outdir
chm13_genome_size = 3054815472
rare_ratio = 0.1
plot_upper = 5
sample_cov = {}
with open(base_number_file,'r') as f:
while True:
line = f.readline()[:-1]
if not line:
break
items = line.split('\t')
sample_cov[items[0]] = int(items[2]) / chm13_genome_size
sample_gender = {}
with open(sample_file, 'r') as f:
while True:
line = f.readline()[:-1]
if not line:
break
items = line.split('\t')
sample_gender[items[0]] = items[1]
HOR_matrix = pd.read_csv(HOR_matrix_file,sep='\t',index_col=0)
patterns = HOR_matrix.index.tolist()
chr_patterns_list = {}
for i in patterns:
items = i.split('_')
chr = items[0]
pattern = items[1]
index = int(pattern[1:].split('L')[0])
if chr not in chr_patterns_list.keys():
chr_patterns_list[chr] = []
chr_patterns_list[chr].append([index,pattern])
else:
chr_patterns_list[chr].append([index, pattern])
data_dict = HOR_matrix.to_dict()
new_data_dict = {}
for i in data_dict.keys():
new_data_dict[i] = data_dict[i]
for j in new_data_dict[i].keys():
chr = j.split('_')[0]
if chr == 'X':
if sample_gender[i] == 'female':
new_data_dict[i][j] = new_data_dict[i][j] / sample_cov[i]
else:
new_data_dict[i][j] = (new_data_dict[i][j] * 2) / sample_cov[i]
elif chr == 'Y':
if sample_gender[i] == 'female':
new_data_dict[i][j] = 0
else:
new_data_dict[i][j] = (new_data_dict[i][j] * 2) / sample_cov[i]
else:
new_data_dict[i][j] = new_data_dict[i][j] / sample_cov[i]
normal_data = pd.DataFrame(new_data_dict)
HOR_nnumber_matrix_file = outdir + '/HOR.nnumber.xls'
normal_data.to_csv(HOR_nnumber_matrix_file,sep='\t')
# filter rare HOR
pattern = normal_data.index.tolist()
chr_patterns = {}
for i in pattern:
items = i.split('_')
if items[0] not in chr_patterns.keys():
chr_patterns[items[0]] = [i]
else:
chr_patterns[items[0]].append(i)
normal_data = normal_data.T
chr_save_patterns = {}
for i in chr_patterns.keys():
chr_save_patterns[i] = []
chr_data = normal_data[chr_patterns[i]]
chr_data = chr_data.T
samples = chr_data.columns.tolist()
sample_sum = []
for j in samples:
sumnumber = np.sum(chr_data[j])
sample_sum.append(sumnumber)
patterns = chr_data.index.tolist()
np_chr_data = np.asarray(chr_data)
for j in range(len(patterns)):
ok = 0
for k in range(len(sample_sum)):
if np_chr_data[j][k] == 0:
ratio = 0
else:
ratio = np_chr_data[j][k] / sample_sum[k]
if ratio > rare_ratio:
ok = 1
if ok == 1:
index = int(patterns[j].split('_')[1][1:].split('L')[0])
chr_save_patterns[i].append([index,patterns[j]])
chr_save_patterns[i] = sorted(chr_save_patterns[i],key=lambda x:x[0])
save_patterns = []
for i in chr_save_patterns.keys():
for j in chr_save_patterns[i]:
save_patterns.append(j[1])
non_rare_normal_data = normal_data[save_patterns]
non_rare_HOR_nnumber_matrix_file = outdir + '/non-rare.HOR.nnumber.xls'
non_rare_normal_data.to_csv(non_rare_HOR_nnumber_matrix_file, sep='\t')
# mean FC
# 额外算Y
non_rare_normal_data_table = non_rare_normal_data.to_dict()
HOR_mean = {}
for i in non_rare_normal_data_table.keys():
HOR_mean[i] = 0
sample_number = 0
for j in non_rare_normal_data_table[i].keys():
if i.startswith('Y_M'):
if sample_gender[j] == 'male':
sample_number += 1
HOR_mean[i] += non_rare_normal_data_table[i][j]
else:
sample_number += 1
HOR_mean[i] += non_rare_normal_data_table[i][j]
if sample_number == 0:
HOR_mean[i] = 0
else:
HOR_mean[i] = HOR_mean[i] / sample_number
non_rare_normal_meanFC_data_table = {}
for i in non_rare_normal_data_table.keys():
non_rare_normal_meanFC_data_table[i] = {}
for j in non_rare_normal_data_table[i].keys():
non_rare_normal_meanFC_data_table[i][j] = non_rare_normal_data_table[i][j] / HOR_mean[i]
non_rare_normal_meanFC_data = pd.DataFrame(non_rare_normal_meanFC_data_table).T
non_rare_HOR_nnumber_meanFC_matrix_file = outdir + '/non-rare.HOR.nnumber.meanFC.xls'
non_rare_normal_meanFC_data.to_csv(non_rare_HOR_nnumber_meanFC_matrix_file, sep='\t')
samples = non_rare_normal_meanFC_data.columns.tolist()
patterns = non_rare_normal_meanFC_data.index.tolist()
non_rare_normal_meanFC_data = np.asarray(non_rare_normal_meanFC_data)
long_data = []
long_data_filter = []
for i in range(len(patterns)):
for j in range(len(samples)):
long_data.append([patterns[i], samples[j], non_rare_normal_meanFC_data[i][j]])
if non_rare_normal_meanFC_data[i][j] > plot_upper:
long_data_filter.append([patterns[i], samples[j], plot_upper])
else:
long_data_filter.append([patterns[i], samples[j], non_rare_normal_meanFC_data[i][j]])
long_data = pd.DataFrame(long_data, columns=[['HOR', 'sample', 'meanFC']])
plot_file = outdir + '/non-rare.HOR.nnumber.meanFC.long.xls'
long_data.to_csv(plot_file, sep='\t', index=None)
plot_filter_file = outdir + '/non-rare.HOR.nnumber.meanFC.long.filter.xls'
long_data_filter = pd.DataFrame(long_data_filter, columns=[['HOR', 'sample', 'meanFC']])
long_data_filter.to_csv(plot_filter_file, sep='\t', index=None)
plt.figure(figsize=(len(patterns),len(patterns) / 5))
for i in range(len(samples)):
sample = samples[i]
x = []
y = []
for j in range(len(patterns)):
pattern = patterns[j]
if pattern.startswith('Y_M'):
if sample_gender[sample] == 'male':
x.append(pattern)
if non_rare_normal_meanFC_data[j][i] > plot_upper:
y.append(plot_upper)
else:
y.append(non_rare_normal_meanFC_data[j][i])
else:
x.append(pattern)
if non_rare_normal_meanFC_data[j][i] > plot_upper:
y.append(plot_upper)
else:
y.append(non_rare_normal_meanFC_data[j][i])
plt.plot(x, y,color='grey')
plt.title('HOR variation (upper = '+str(plot_upper)+')',fontsize = len(patterns) / 2)
plt.xlabel('HOR',fontsize = len(patterns) / 2)
plt.ylabel('mean FC',fontsize = len(patterns) / 2)
plt.xticks(rotation=45,fontsize = len(patterns) / 5)
plt.yticks(fontsize=len(patterns) / 5)
plt.tight_layout()
plt.savefig(workdir + '/HOR_variation.pdf')
plt.close()
# 计算SD
HOR_sd = []
for i in non_rare_normal_meanFC_data_table.keys():
values = []
for j in non_rare_normal_meanFC_data_table[i].keys():
if i.startswith('Y_M'):
if sample_gender[j] == 'male':
values.append(non_rare_normal_meanFC_data_table[i][j])
else:
values.append(non_rare_normal_meanFC_data_table[i][j])
values = np.asarray(values)
HOR_sd.append([i,values.std()])
HOR_sd = sorted(HOR_sd,key=lambda x:x[1],reverse=True)
HOR_sd_file = outdir + '/non-rare.HOR.nnumber.meanFC.std.xls'
HOR_sd = pd.DataFrame(HOR_sd, columns=[['HOR', 'std']])
HOR_sd.to_csv(HOR_sd_file, sep='\t', index=None)
if __name__ == '__main__':
main()