-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_loader.py
142 lines (117 loc) · 4.91 KB
/
model_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from models.resnet import *
from models.imagenet_resnet import resnet50
import torch
import torch.nn as nn
import torch.nn.functional as F
def get_model(cfg,with_fc=True):
num_classes=cfg.DATASET.NUM_CLASSES
if 'SimCLR' in cfg.ALGORITHM.NAME:
contrastive_learning=True
else:
contrastive_learning=False
model_name=cfg.MODEL.NAME
if model_name == 'PreResNet18':
model = PreResNet18(num_classes,contrastive_learning)
elif model_name == 'ResNet18':
model = ResNet18(num_classes,contrastive_learning)
elif model_name == 'ResNet34':
model = ResNet34(num_classes,contrastive_learning)
elif model_name == 'Resnet50':
model = Resnet50(num_classes=num_classes)
elif model_name == 'resnet50':
model = resnet50()
elif model_name == 'wide_resnet':
model = wide_resnet(num_classes=num_classes,contranstive_learning=contrastive_learning)
return model
class WideBasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(WideBasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False)
)
def forward(self, x):
o1 = F.leaky_relu(self.bn1(x), 0.1)
y = self.conv1(o1)
o2 = F.leaky_relu(self.bn2(y), 0.1)
z = self.conv2(o2)
if len(self.shortcut)==0:
return z + x
else:
return z + self.shortcut(o1)
class WideResNet(nn.Module):
""" WRN28-width with leaky relu (negative slope is 0.1)"""
def __init__(self, block, depth, width, num_classes, contranstive_learning=False):
super(WideResNet, self).__init__()
self.in_planes = 16
assert (depth - 4) % 6 == 0, 'depth should be 6n+4'
n = (depth - 4) // 6
widths = [int(v * width) for v in (16, 32, 64)]
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.layer1 = self._make_layer(block, widths[0], n, stride=1)
self.layer2 = self._make_layer(block, widths[1], n, stride=2)
self.layer3 = self._make_layer(block, widths[2], n, stride=2)
self.bn1 = nn.BatchNorm2d(widths[2])
self.contranstive_learning = contranstive_learning
if not contranstive_learning:
self.linear = nn.Linear(widths[2]*block.expansion, num_classes)
# assert(False)
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
nn.init.uniform_(m.weight)
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.running_mean, 0)
nn.init.constant_(m.running_var, 1)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x, feature=False, aux=False):
f0 = self.conv1(x)
f1 = self.layer1(f0)
f2 = self.layer2(f1)
f3 = self.layer3(f2)
out = F.leaky_relu(self.bn1(f3), 0.1)
out = F.avg_pool2d(out, 8)
out = out.view(out.size(0), -1)
if not self.contranstive_learning:
out = self.linear(out)
# assert(False)
return out
# def rot(self, x, aux=False):
# f0 = self.conv1(x)
# f1 = self.layer1(f0)
# f2 = self.layer2(f1)
# f3 = self.layer3(f2)
# out = F.leaky_relu(self.bn1(f3), 0.1)
# out = F.avg_pool2d(out, 8)
# out4 = out.view(out.size(0), -1)
# out_rot = self.linear_rot(out4)
# return out_rot
# def forward_rot(self, x, aux=False):
# f0 = self.conv1(x)
# f1 = self.layer1(f0)
# f2 = self.layer2(f1)
# f3 = self.layer3(f2)
# out = F.leaky_relu(self.bn1(f3), 0.1)
# out = F.avg_pool2d(out, 8)
# out4 = out.view(out.size(0), -1)
# out = self.linear(out4)
# out_rot = self.linear_rot(out4)
# return out, out_rot
def wide_resnet(depth=28, width=2, num_classes=10,contranstive_learning=False):
return WideResNet(WideBasicBlock, 28, 2, num_classes, contranstive_learning)