-
Notifications
You must be signed in to change notification settings - Fork 2
/
cnnModels.py
423 lines (375 loc) · 18.6 KB
/
cnnModels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#%%
import torch
import torch.nn as nn
import torch.nn.functional as F
# from non_local_embedded_gaussian import NONLocalBlock2D, NONLocalBlock1D
from torch.distributions import Normal
# %%
class Upsample(nn.Module):
def __init__(self, scale_factor, mode="nearest"):
super(Upsample, self).__init__()
self.scale_factor = scale_factor
self.mode = mode
def forward(self, x):
x = F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode)
return x
class Conv1d(nn.Module):
def __init__(self, inpChan, outChan, length = 512, kernel=3, stride=1, dilation=1,
paddingType = 'same'):
super(Conv1d, self).__init__()
self.net = nn.Sequential()
# assymetrical padding like tensorflow
if paddingType == 'same':
inpShape = (None, inpChan, length) #currentInpShape[2]//stride[0])
outShape = (None, outChan, length//stride)
C_p = outShape[2]
C = inpShape[2]
Pc = (C_p - 1) * stride + ( kernel - 1) * dilation + 1 - C
right = Pc - Pc//2
left = Pc//2
self.net.add_module('zp',nn.ZeroPad2d((left, right,0,0)))
self.net.add_module('conv1d', nn.Conv1d(inpChan, outChan, kernel, stride ,padding=0, dilation=dilation, bias=True))
torch.nn.init.xavier_uniform_(
self.net.conv1d.weight, gain=torch.nn.init.calculate_gain('linear'))
# self.outputShape = length // stride
def forward(self, x):
# print(self.pad(x).shape)
return self.net(x)
class ConvUp1d(nn.Module):
def __init__(self, inpChan, outChan, length = 512, kernel=3, scale=1, dilation=1, mode = 'nearest'):
super(ConvUp1d, self).__init__()
# assymetrical padding like tensorflow
self.net = nn.Sequential()
if scale > 1:
self.net.add_module('upsample', Upsample(scale_factor = scale,mode = mode))
self.net.add_module('conv', Conv1d(inpChan, outChan, length = scale*length, kernel=kernel, stride=1, dilation=dilation,
paddingType = 'same'))
def forward(self, x):
return self.net(x)
class ConvBlock(nn.Module):
def __init__(self, inpChan, outChan, length = 512, kernel=3, stride=1, dilation=1,
norm = False, activation = None, pooling = None, poolingKernel = 2):
super(ConvBlock, self).__init__()
self.net = nn.Sequential()
if pooling is not None:
stride = 1
self.net.add_module('conv', Conv1d(inpChan, outChan, length, kernel, stride , dilation=dilation, paddingType='same'))
self.outLength = length // stride
if norm is True:
self.net.add_module('batchNorm', nn.BatchNorm1d(outChan))
if activation == 'lrelu':
self.net.add_module('activation', nn.LeakyReLU(inplace=True))
elif activation == 'relu':
self.net.add_module('activation', nn.ReLU(inplace=True))
if pooling == 'max':
self.net.add_module('pooling', nn.MaxPool1d(poolingKernel))
self.outLength = self.outLength // poolingKernel
def forward(self, x):
return self.net(x)
class MlpBlock(nn.Module):
def __init__(self, inpChan, outChan, norm = False, activation = None, dropout = 0.0):
super(MlpBlock, self).__init__()
self.net = nn.Sequential()
self.net.add_module('conv', nn.Linear(inpChan, outChan))
if norm is True:
self.net.add_module('batchNorm', nn.BatchNorm1d(outChan))
if activation == 'lrelu':
self.net.add_module('activation', nn.LeakyReLU(inplace=True))
elif activation == 'relu':
self.net.add_module('activation', nn.ReLU(inplace=True))
if dropout > 0.0:
self.net.add_module('dropout', nn.Dropout(dropout))
def forward(self, x):
return self.net(x)
class ConvUpBlock(nn.Module):
def __init__(self, inpChan, outChan, length = 512, kernel=3, scale=1, dilation=1,
norm = False, activation = None, mode = 'nearest'):
super(ConvUpBlock, self).__init__()
self.net = nn.Sequential()
self.net.add_module('convUp', ConvUp1d(inpChan, outChan, length, kernel, scale , dilation=dilation, mode=mode))
self.outLength = length * scale
if norm is True:
self.net.add_module('batchNorm', nn.BatchNorm1d(outChan))
if activation == 'lrelu':
self.net.add_module('activation', nn.LeakyReLU(inplace=True))
elif activation == 'relu':
self.net.add_module('activation', nn.ReLU(inplace=True))
# if pooling == 'max':
# self.net.add_module('pooling', nn.MaxPool1d(poolingKernel))
# self.outLength = self.outLength // poolingKernel
def forward(self, x):
return self.net(x)
class ResDownBlock(nn.Module):
def __init__(self, inpChan, outChan, length = 512, kernel=3, stride=1, dilation=1,
norm = False, activation = 'lrelu', pooling = None, poolingKernel = 2):
super(ResDownBlock, self).__init__()
btlnkChan = outChan//2
if btlnkChan == 0:
btlnkChan = 1
self.outLength = length
self.conv1 = ConvBlock(inpChan, btlnkChan, length, 1, 1, 1, norm, activation, None)
self.outLength = self.conv1.outLength
self.conv2 = ConvBlock(btlnkChan, btlnkChan, self.outLength, kernel, stride, dilation, norm, activation, pooling, poolingKernel)
self.outLength = self.conv2.outLength
self.conv3 = ConvBlock(btlnkChan, outChan, self.outLength, 1, 1, 1, norm, activation, None)
self.outLength = self.conv3.outLength
self.skip = ConvBlock(inpChan, outChan, length, 1, stride, 1, norm, None, pooling, poolingKernel)
# if pooling == 'average':
# self.AvePool = nn.AvgPool2d(scale)
# else:
# self.AvePool = nn.MaxPool2d(scale)
if activation == 'lrelu':
self.act = nn.LeakyReLU(inplace=True)
elif activation == 'relu':
self.act = nn.ReLU(inplace=True)
def forward(self, x):
skip = self.skip(x)
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.act(x+skip)
return x
class ResUpBlock(nn.Module):
def __init__(self, inpChan, outChan, length = 512, kernel=3, scale=1, dilation=1, finalActivation = 'lrelu',
norm = False, activation = 'lrelu', mode='nearest', bottleneck = True):
super(ResUpBlock, self).__init__()
# scale has the role that stride had in ResDownBlock
# we used stride to reduce the spatial size (instead of pooling)
if bottleneck == True:
btlnkChan = outChan//2
if btlnkChan == 0:
btlnkChan = 1
else:
btlnkChan = outChan
self.outLength = length
self.conv1 = ConvUpBlock(inpChan, btlnkChan, length, 1, 1, 1, norm, activation, mode)
self.outLength = self.conv1.outLength
self.conv2 = ConvUpBlock(btlnkChan, btlnkChan, self.outLength, kernel, scale, dilation, norm, activation, mode)
self.outLength = self.conv2.outLength
self.conv3 = ConvUpBlock(btlnkChan, outChan, self.outLength, 1, 1, 1, norm, activation, mode)
self.outLength = self.conv3.outLength
self.finalActivation = finalActivation
self.skip = ConvUpBlock(inpChan, outChan, length, 1, scale, 1, norm, mode)
if activation == 'lrelu':
self.act = nn.LeakyReLU(inplace=True)
elif activation == 'relu':
self.act = nn.ReLU(inplace=True)
def forward(self, x):
# print(x.shape)
# print(self.skip)
skip = self.skip(x)
# print(skip.shape)
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
if self.finalActivation is not None:
x = self.act(x+skip)
else:
x = x+skip
return x
#%%
class CurveVAEDil(nn.Module):
def __init__(self, device, inpChan, baseChan, zDims=128, layers = 6, kernel=3, nSamples = 512, decoderDilation=True, encoderDilation=True, finalActivation = 'lrelu',
mode='nearest', bottleneck=True, encoderType = 'CNN', decoderType = 'CNN',norm = True, pooling=None, activation = 'lrelu', dropout = 0.0):
super(CurveVAEDil, self).__init__()
self.nSamples = nSamples
self.device = device
self.zDims = zDims
self.inpChan = inpChan
self.baseChan = baseChan
self.dropout = dropout
inpFlatSize = inpChan * nSamples
self.encoderType = encoderType
self.decoderType = decoderType
self.encoder = nn.Sequential()
if encoderType == 'CNN':
# layers = 7
currentChan = inpChan
currentLength = nSamples
kernel = kernel
# self.decoderList = nn.ModuleList()
strides = [2]*layers
for i in range(layers):
if encoderDilation is True:
currentDil = 2**i
else:
currentDil = 2**0
# currentDil = 2**i
outChan = baseChan * 2**i
resBlock = ResDownBlock(currentChan, outChan, length = currentLength, kernel=kernel, stride=strides[i], dilation=currentDil,
norm = norm, activation = activation, pooling = pooling, poolingKernel = strides[i])
self.encoder.add_module(f'layer{i}', resBlock)
print(f"encoder layer {i} inpC {currentChan} outC {outChan} dil {currentDil}")
# resUpBlock = ResUpBlock(outChan, currentChan, length = currentLength, kernel=kernel, scale=strides[i], dilation=currentDil,
# norm = norm, activation = activation, pooling = pooling, poolingKernel = strides[i])
# self.decoderList.append()
currentChan = outChan
currentLength = resBlock.outLength
# print(currentLength)
self.mu = Conv1d(currentChan,zDims,length=currentLength,
kernel=currentLength, paddingType = None)
self.std = Conv1d(currentChan,zDims,length=currentLength,
kernel=currentLength, paddingType = None)
elif encoderType == 'MLP':
if layers == 2:
self.encoder.add_module('layer1_mlp', MlpBlock(inpFlatSize, 512, norm = norm, activation = activation, dropout=dropout))
self.encoder.add_module('layer3_mlp', MlpBlock(512, 128, norm = norm, activation = activation, dropout=dropout))
else:
self.encoder.add_module('layer1_mlp', MlpBlock(inpFlatSize, 512, norm = norm, activation = activation, dropout=dropout))
self.encoder.add_module('layer2_mlp', MlpBlock(512, 256, norm = norm, activation = activation, dropout=dropout))
self.encoder.add_module('layer3_mlp', MlpBlock(256, 128, norm = norm, activation = activation, dropout=dropout))
self.mu = nn.Linear(128, zDims)
self.std = nn.Linear(128, zDims)
# currentChan = baseChan * 2**(layers-1)
self.decoder = nn.Sequential()
if decoderType == 'CNN':
if encoderType == 'CNN':
self.upsample = Upsample(scale_factor=currentLength)
self.conv11 = nn.Conv1d(zDims, currentChan,1,1,0,1)
# currentChan = zDims
scales = [2]*layers
for i in range(layers):
currentAct = activation
if i == layers-1:
currentAct = finalActivation
if decoderDilation is True:
currentDil = 2**i
else:
currentDil = 2**0
if i < layers - 1:
outChan = baseChan * 2**(layers-i-2)
elif i == layers - 1:
outChan = inpChan
resUpBlock = ResUpBlock(currentChan, outChan, length = currentLength, kernel=kernel, scale=scales[i], dilation=currentDil,
norm = norm, activation = activation, mode=mode, bottleneck=bottleneck, finalActivation = currentAct )
self.decoder.add_module(f'layerUp{i}', resUpBlock)
print(f"decoder layer {i} inpC {currentChan} outC {outChan} dil {currentDil}")
# resUpBlock = ResUpBlock(outChan, currentChan, length = currentLength, kernel=kernel, scale=strides[i], dilation=currentDil,
# norm = norm, activation = activation, pooling = pooling, poolingKernel = strides[i])
# self.decoderList.append()
currentChan = outChan
currentLength = resBlock.outLength
elif decoderType == 'MLP':
if layers == 2:
self.decoder.add_module('layer1_mlp', MlpBlock(zDims, 512, norm = norm, activation = activation,dropout=dropout))
self.decoder.add_module('layer3_mlp', MlpBlock(512, inpFlatSize, norm = False, activation = finalActivation))
else:
self.decoder.add_module('layer1_mlp', MlpBlock(zDims, 256, norm = norm, activation = activation,dropout=dropout))
self.decoder.add_module('layer2_mlp', MlpBlock(256, 512, norm = norm, activation = activation,dropout=dropout))
self.decoder.add_module('layer3_mlp', MlpBlock(512, inpFlatSize, norm = False, activation = finalActivation))
def runEncoder(self, x):
batchSize = x.shape[0]
if self.encoderType == 'MLP':
x = x.view(batchSize, -1)
x = self.encoder(x)
mu = self.mu(x)
# print(mu.shape)
std = self.std(x)
std = torch.nn.functional.softplus(std) + 1e-6
distr = Normal(mu, std)
return distr
def forward(self, x):
batchSize = x.shape[0]
if self.encoderType == 'MLP':
x = x.view(batchSize, -1)
# print(x.shape)
x = self.encoder(x)
# print(x.shape)
mu = self.mu(x)
# print(mu.shape)
std = self.std(x)
std = torch.nn.functional.softplus(std) + 1e-6
distr = Normal(mu, std)
z = distr.rsample()
# print(f"z {z.shape}")
if self.decoderType == 'CNN':
if self.encoderType == 'CNN':
z = self.upsample(z)
z = self.conv11(z)
# if self.encoderType == 'MLP':
# z = z.view(batchSize, self.zDims, 1)
# print(z.shap e)
out = self.decoder(z.squeeze())
if self.decoderType == 'MLP':
out = out.view(batchSize, self.inpChan, -1)
return out, mu, std
#%%
class CurveEncoder(nn.Module):
def __init__(self, device, inpChan, baseChan, zDims=128, layers = 6, kernel=3, nSamples = 512, decoderDilation=True, encoderDilation=True, finalActivation = 'lrelu',
mode='nearest', bottleneck=True, encoderType = 'CNN', decoderType = 'CNN',norm = True, pooling=None, activation = 'lrelu', dropout = 0.0):
super(CurveEncoder, self).__init__()
self.nSamples = nSamples
self.device = device
self.zDims = zDims
self.inpChan = inpChan
self.baseChan = baseChan
self.dropout = dropout
inpFlatSize = inpChan * nSamples
self.encoderType = encoderType
self.decoderType = decoderType
self.encoder = nn.Sequential()
if encoderType == 'CNN':
# layers = 7
currentChan = inpChan
currentLength = nSamples
kernel = kernel
# self.decoderList = nn.ModuleList()
strides = [2]*layers
for i in range(layers):
if encoderDilation is True:
currentDil = 2**i
else:
currentDil = 2**0
# currentDil = 2**i
outChan = baseChan * 2**i
resBlock = ResDownBlock(currentChan, outChan, length = currentLength, kernel=kernel, stride=strides[i], dilation=currentDil,
norm = norm, activation = activation, pooling = pooling, poolingKernel = strides[i])
self.encoder.add_module(f'layer{i}', resBlock)
# print(f"encoder layer {i} inpC {currentChan} outC {outChan} dil {currentDil}")
# resUpBlock = ResUpBlock(outChan, currentChan, length = currentLength, kernel=kernel, scale=strides[i], dilation=currentDil,
# norm = norm, activation = activation, pooling = pooling, poolingKernel = strides[i])
# self.decoderList.append()
currentChan = outChan
currentLength = resBlock.outLength
# print(currentLength)
self.mu = Conv1d(currentChan,zDims,length=currentLength,
kernel=currentLength, paddingType = None)
self.std = Conv1d(currentChan,zDims,length=currentLength,
kernel=currentLength, paddingType = None)
elif encoderType == 'MLP':
if layers == 2:
self.encoder.add_module('layer1_mlp', MlpBlock(inpFlatSize, 512, norm = norm, activation = activation, dropout=dropout))
self.encoder.add_module('layer3_mlp', MlpBlock(512, 128, norm = norm, activation = activation, dropout=dropout))
else:
self.encoder.add_module('layer1_mlp', MlpBlock(inpFlatSize, 512, norm = norm, activation = activation, dropout=dropout))
self.encoder.add_module('layer2_mlp', MlpBlock(512, 256, norm = norm, activation = activation, dropout=dropout))
self.encoder.add_module('layer3_mlp', MlpBlock(256, 128, norm = norm, activation = activation, dropout=dropout))
self.mu = nn.Linear(128, zDims)
self.std = nn.Linear(128, zDims)
# currentChan = baseChan * 2**(layers-1)
def runEncoder(self, x):
batchSize = x.shape[0]
if self.encoderType == 'MLP':
x = x.view(batchSize, -1)
x = self.encoder(x)
mu = self.mu(x)
# print(mu.shape)
std = self.std(x)
std = torch.nn.functional.softplus(std) + 1e-6
distr = Normal(mu, std)
return distr
def forward(self, x):
batchSize = x.shape[0]
if self.encoderType == 'MLP':
x = x.view(batchSize, -1)
# print(x.shape)
x = self.encoder(x)
# print(x.shape)
mu = self.mu(x)
# print(mu.shape)
std = self.std(x)
std = torch.nn.functional.softplus(std) + 1e-6
distr = Normal(mu, std)
# z = distr.rsample()
# print(f"z {z.shape}")
return distr