-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathscc.h
67 lines (62 loc) · 2.03 KB
/
scc.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*******************************************************************************
* DANIEL'S ALGORITHM IMPLEMENTAIONS
*
* /\ | _ _ ._ o _|_ |_ ._ _ _
* /--\ | (_| (_) | | |_ | | | | | _>
* _|
*
* STRONGLY CONNECTED COMPONENT
*
* In the mathematical theory of directed graphs, a graph is said to be strongly
* connected if every vertex is reachable from every other vertex. The strongly
* connected components of an arbitrary directed graph form a partition into
* subgraphs that are themselves strongly connected. It is possible to test the
* strong connectivity of a graph, or to find its strongly connected components,
* in linear time.
*
* http://en.wikipedia.org/wiki/Strongly_connected_component
******************************************************************************/
#ifndef ALGO_SCC_H__
#define ALGO_SCC_H__
#include <stdio.h>
#include <stdint.h>
#include <limits.h>
#include "graph_defs.h"
#include "graph_search.h"
#include "heap.h"
namespace alg {
/**
* Output Strongly Connected Component of a Graph
*/
static void SCC(DirectedGraph &g) {
// call DFS(G) to compute finishing times u.f for each vertex u
DFS(g);
// the transpose of the graph
DirectedGraph * GT = g.transpose();
// step 1. discover vertices of G in decreasing of u.f
Heap<int32_t> Q(g.vertex_count()) ;
Graph::Adjacent * a;
list_for_each_entry(a, &g.list(), a_node) {
Q.push(INT_MAX - a->f, a->v.id); // descending order of a->f
}
// step 2. discover
// mark all vertex color to WHITE
list_for_each_entry(a, >->list(), a_node) {
a->color = Graph::WHITE;
}
// step 3. call DFS(GT), but in the main loop of DFS, consider the vertices
// in order of decreasing u.f (as computed in line 1)
while(!Q.is_empty()) {
Heap<int32_t>::elem e = Q.pop();
int32_t key = e.key;
int32_t id = e.data;
if ((*GT)[id]->color == Graph::WHITE) {
printf("component:%d %d\n",id, INT_MAX - key);
_DFS_VISIT(*GT, (*GT)[id]);
printf("\n");
}
}
delete GT;
}
}
#endif //