-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
122 lines (98 loc) · 3.14 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import matplotlib.pyplot as plt
import numpy as np
import PIL
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import pathlib
training_dir = pathlib.Path("training/")
# distorted_test_dir = pathlib.Path("DisCaptcha_v0/_test")
# categories = ["airplane", "car", "cat", "dog", "flower", "fruit", "motorbike", "person"]
# airplanes = list(archive_test_dir.glob('airplane/*'))
classes = ["distorted", "original"]
original = []
distorted = []
image_count = len(list(training_dir.glob('*/*.jpg')))
print(image_count)
batch_size = 32
img_height = 180
img_width = 180
train_ds = tf.keras.utils.image_dataset_from_directory(
training_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
val_ds = tf.keras.utils.image_dataset_from_directory(
training_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
plt.show()
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
normalization_layer = tf.keras.layers.Rescaling(1./255)
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(normalized_ds))
first_image = image_batch[0]
# Notice the pixel values are now in `[0,1]`.
print(np.min(first_image), np.max(first_image))
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
num_classes = 2
model = tf.keras.Sequential([
tf.keras.layers.Rescaling(1./255),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(num_classes)
])
model.compile(
optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(
train_ds,
validation_data=val_ds,
epochs=3
)
# for category in categories:
# original = original + list(archive_test_dir.glob(category + '/*'))
# distorted_categories = ["airplane", "cat"]
# for category in distorted_categories:
# distorted = distorted + list(distorted_test_dir.glob(category + '/*'))
# PIL.Image.open(str(original[0])).show()
# PIL.Image.open(str(distorted[0])).show()
# batch_size = 32
# img_height = 180
# img_width = 180
# print(str(original[0]))
# train_ds = tf.keras.utils.image_dataset_from_directory(
# data_dir,
# validation_split=0.2,
# subset="training",
# seed=123,
# image_size=(img_height, img_width),
# batch_size=batch_size)