-
Notifications
You must be signed in to change notification settings - Fork 30
/
kmeans.py
108 lines (92 loc) · 4 KB
/
kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import numpy as np
class YOLOKmeans:
def __init__(self, cluster_number, annotation_paths, anchors_path, input_size=(416, 416)):
self.cluster_number = cluster_number
self.annotation_paths = annotation_paths
self.anchors_path = anchors_path
# (h, w)
self.input_size = input_size
def iou(self, boxes, clusters):
n = boxes.shape[0]
k = self.cluster_number
# (n, )
box_area = boxes[:, 0] * boxes[:, 1]
box_area = box_area.repeat(k)
box_area = np.reshape(box_area, (n, k))
cluster_area = clusters[:, 0] * clusters[:, 1]
cluster_area = np.tile(cluster_area, [1, n])
cluster_area = np.reshape(cluster_area, (n, k))
box_w_matrix = np.reshape(boxes[:, 0].repeat(k), (n, k))
cluster_w_matrix = np.reshape(np.tile(clusters[:, 0], (1, n)), (n, k))
min_w_matrix = np.minimum(cluster_w_matrix, box_w_matrix)
box_h_matrix = np.reshape(boxes[:, 1].repeat(k), (n, k))
cluster_h_matrix = np.reshape(np.tile(clusters[:, 1], (1, n)), (n, k))
min_h_matrix = np.minimum(cluster_h_matrix, box_h_matrix)
inter_area = np.multiply(min_w_matrix, min_h_matrix)
result = inter_area / (box_area + cluster_area - inter_area)
return result
def avg_iou(self, boxes, clusters):
accuracy = np.mean([np.max(self.iou(boxes, clusters), axis=1)])
return accuracy
def kmeans(self, boxes, k, dist=np.median):
box_number = boxes.shape[0]
last_nearest = np.zeros((box_number,))
np.random.seed()
# init k clusters
clusters = boxes[np.random.choice(box_number, k, replace=False)]
while True:
distances = 1 - self.iou(boxes, clusters)
current_nearest = np.argmin(distances, axis=1)
# clusters won't change
if (last_nearest == current_nearest).all():
break
for cluster in range(k):
clusters[cluster] = dist(boxes[current_nearest == cluster], axis=0)
print('clusters={}'.format(clusters))
last_nearest = current_nearest
return clusters
def result2txt(self, data):
f = open(self.anchors_path, 'w')
row = np.shape(data)[0]
for i in range(row):
if i == 0:
x_y = "%d,%d" % (data[i][0], data[i][1])
else:
x_y = ", %d,%d" % (data[i][0], data[i][1])
f.write(x_y)
f.close()
def txt2boxes(self):
dataset = []
for annotation_path in self.annotation_paths:
f = open(annotation_path, 'r')
for line in f:
infos = line.split(" ")
length = len(infos)
for i in range(1, length):
width = int(infos[i].split(",")[2]) - int(infos[i].split(",")[0])
height = int(infos[i].split(",")[3]) - int(infos[i].split(",")[1])
dataset.append([width, height])
f.close()
result = np.array(dataset)
return result
def resize_bbox(self, bbox, image_shape):
bbox_width = bbox[2] - bbox[0]
bbox_height = bbox[3] - bbox[1]
scale = min(self.input_size[0] / image_shape[0], self.input_size[1] / image_shape[1])
return round(bbox_width * scale), round(bbox_height * scale)
def txt2clusters(self):
all_boxes = self.txt2boxes()
# (num_clusters, 2) wh
result = self.kmeans(all_boxes, k=self.cluster_number)
result = result[np.lexsort(result.T[0, None])]
# self.result2txt(result)
print("K anchors:\n {}".format(result))
print("Accuracy: {:.2f}%".format(self.avg_iou(all_boxes, result) * 100))
if __name__ == "__main__":
num_clusters = 9
annotation_paths = [
"/home/adam/.keras/datasets/VOCdevkit/trainval/train.txt",
"/home/adam/.keras/datasets/VOCdevkit/test/test.txt"
]
kmeans = YOLOKmeans(num_clusters, annotation_paths, 'voc_anchors_416.txt')
kmeans.txt2clusters()