-
Notifications
You must be signed in to change notification settings - Fork 34
/
measures.py
235 lines (186 loc) · 10 KB
/
measures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# MAE, Precision, Recall, F-measure, IoU, Precision-Recall curves
import numpy as np
from skimage import io
import matplotlib.pyplot as plt
def mask_normalize(mask):
# input 'mask': HxW
# output: HxW [0,255]
return mask/(np.amax(mask)+1e-8)
def compute_mae(mask1,mask2):
# input 'mask1': HxW or HxWxn (asumme that all the n channels are the same and only the first channel will be used)
# 'mask2': HxW or HxWxn
# output: a value MAE, Mean Absolute Error
if(len(mask1.shape)<2 or len(mask2.shape)<2):
print("ERROR: Mask1 or mask2 is not matrix!")
exit()
if(len(mask1.shape)>2):
mask1 = mask1[:,:,0]
if(len(mask2.shape)>2):
mask2 = mask2[:,:,0]
if(mask1.shape!=mask2.shape):
print("ERROR: The shapes of mask1 and mask2 are different!")
exit()
h,w = mask1.shape[0],mask1.shape[1]
mask1 = mask_normalize(mask1)
mask2 = mask_normalize(mask2)
sumError = np.sum(np.absolute((mask1.astype(float) - mask2.astype(float))))
maeError = sumError/(float(h)*float(w)+1e-8)
return maeError
def compute_ave_MAE_of_methods(gt_name_list,rs_dir_lists):
#input 'gt_name_list': ground truth name list
#input 'rs_dir_lists': to-be-evaluated mask directories (not the file names, just folder names)
#output average Mean Absolute Error, 1xN, N is the number of folders
#output 'gt2rs': numpy array with shape of (num_rs_dir)
num_gt = len(gt_name_list) # number of ground truth files
num_rs_dir = len(rs_dir_lists) # number of method folders
if(num_gt==0):
print("ERROR: The ground truth directory is empty!")
exit()
mae = np.zeros((num_gt,num_rs_dir)) # MAE of methods
gt2rs = np.zeros((num_gt,num_rs_dir)) # indicate if the mask mae of methods is correctly computed
for i in range(0,num_gt):
print('-Processed %d/%d'%(i+1,num_gt),end='\r')
#print("Completed {:2.0%}".format(i / num_gt), end="\r") # print percentile of processed, python 3.0 and newer version
gt = io.imread(gt_name_list[i]) # read ground truth
gt_name = gt_name_list[i].split('/')[-1] # get the file name of the ground truth
for j in range(0,num_rs_dir):
tmp_mae = 0.0
try:
rs = io.imread(rs_dir_lists[j]+gt_name) # read the corresponding mask of each method
except IOError:
#print('ERROR: Couldn\'t find the following file:',rs_dir_lists[j]+gt_name)
continue
try:
tmp_mae = compute_mae(gt,rs) # compute the mae
except IOError:
#print('ERROR: Fails in compute_mae!')
continue
mae[i][j] = tmp_mae
gt2rs[i][j] = 1.0
mae_col_sum = np.sum(mae,0) # compute the sum of MAE of each method
gt2rs = np.sum(gt2rs,0) # compute the number of correctly computed MAE of each method
ave_maes = mae_col_sum/(gt2rs+1e-8) # compute the average MAE of each method
return ave_maes, gt2rs
def compute_pre_rec(gt,mask,mybins=np.arange(0,256)):
if(len(gt.shape)<2 or len(mask.shape)<2):
print("ERROR: gt or mask is not matrix!")
exit()
if(len(gt.shape)>2): # convert to one channel
gt = gt[:,:,0]
if(len(mask.shape)>2): # convert to one channel
mask = mask[:,:,0]
if(gt.shape!=mask.shape):
print("ERROR: The shapes of gt and mask are different!")
exit()
gtNum = gt[gt>128].size # pixel number of ground truth foreground regions
pp = mask[gt>128] # mask predicted pixel values in the ground truth foreground region
nn = mask[gt<=128] # mask predicted pixel values in the ground truth bacground region
pp_hist,pp_edges = np.histogram(pp,bins=mybins) #count pixel numbers with values in each interval [0,1),[1,2),...,[mybins[i],mybins[i+1]),...,[254,255)
nn_hist,nn_edges = np.histogram(nn,bins=mybins)
pp_hist_flip = np.flipud(pp_hist) # reverse the histogram to the following order: (255,254],...,(mybins[i+1],mybins[i]],...,(2,1],(1,0]
nn_hist_flip = np.flipud(nn_hist)
pp_hist_flip_cum = np.cumsum(pp_hist_flip) # accumulate the pixel number in intervals: (255,254],(255,253],...,(255,mybins[i]],...,(255,0]
nn_hist_flip_cum = np.cumsum(nn_hist_flip)
precision = pp_hist_flip_cum/(pp_hist_flip_cum + nn_hist_flip_cum+1e-8) #TP/(TP+FP)
recall = pp_hist_flip_cum/(gtNum+1e-8) #TP/(TP+FN)
precision[np.isnan(precision)]= 0.0
recall[np.isnan(recall)] = 0.0
return np.reshape(precision,(len(precision))),np.reshape(recall,(len(recall)))
def compute_PRE_REC_FM_of_methods(gt_name_list,rs_dir_lists,beta=0.3):
#input 'gt_name_list': ground truth name list
#input 'rs_dir_lists': to-be-evaluated mask directories (not the file names, just folder names)
#output precision 'PRE': numpy array with shape of (num_rs_dir, 256)
# recall 'REC': numpy array with shape of (num_rs_dir, 256)
# F-measure (beta) 'FM': numpy array with shape of (num_rs_dir, 256)
mybins = np.arange(0,256) # different thresholds to achieve binarized masks for pre, rec, Fm measures
num_gt = len(gt_name_list) # number of ground truth files
num_rs_dir = len(rs_dir_lists) # number of method folders
if(num_gt==0):
#print("ERROR: The ground truth directory is empty!")
exit()
PRE = np.zeros((num_gt,num_rs_dir,len(mybins)-1)) # PRE: with shape of (num_gt, num_rs_dir, 256)
REC = np.zeros((num_gt,num_rs_dir,len(mybins)-1)) # REC: the same shape with PRE
# FM = np.zeros((num_gt,num_rs_dir,len(mybins)-1)) # Fm: the same shape with PRE
gt2rs = np.zeros((num_gt,num_rs_dir)) # indicate if the mask of methods is correctly computed
for i in range(0,num_gt):
print('>>Processed %d/%d'%(i+1,num_gt),end='\r')
gt = io.imread(gt_name_list[i]) # read ground truth
gt = mask_normalize(gt)*255.0 # convert gt to [0,255]
gt_name = gt_name_list[i].split('/')[-1] # get the file name of the ground truth "xxx.png"
for j in range(0,num_rs_dir):
pre, rec, f = np.zeros(len(mybins)), np.zeros(len(mybins)), np.zeros(len(mybins)) # pre, rec, f or one mask w.r.t different thresholds
try:
rs = io.imread(rs_dir_lists[j]+gt_name) # read the corresponding mask from each method
rs = mask_normalize(rs)*255.0 # convert rs to [0,255]
except IOError:
#print('ERROR: Couldn\'t find the following file:',rs_dir_lists[j]+gt_name)
continue
try:
pre, rec = compute_pre_rec(gt,rs,mybins=np.arange(0,256))
except IOError:
#print('ERROR: Fails in compute_mae!')
continue
PRE[i,j,:] = pre
REC[i,j,:] = rec
gt2rs[i,j] = 1.0
print('\n')
gt2rs = np.sum(gt2rs,0) # num_rs_dir
gt2rs = np.repeat(gt2rs[:, np.newaxis], 255, axis=1) #num_rs_dirx255
PRE = np.sum(PRE,0)/(gt2rs+1e-8) # num_rs_dirx255, average PRE over the whole dataset at every threshold
REC = np.sum(REC,0)/(gt2rs+1e-8) # num_rs_dirx255
FM = (1+beta)*PRE*REC/(beta*PRE+REC+1e-8) # num_rs_dirx255
return PRE, REC, FM, gt2rs
def plot_save_pr_curves(PRE, REC, method_names, lineSylClr, linewidth, xrange=(0.0,1.0), yrange=(0.0,1.0), dataset_name = 'TEST', save_dir = './', save_fmt = 'pdf'):
fig1 = plt.figure(1)
num = PRE.shape[0]
for i in range(0,num):
if (len(np.array(PRE[i]).shape)!=0):
plt.plot(REC[i], PRE[i],lineSylClr[i],linewidth=linewidth[i],label=method_names[i])
plt.xlim(xrange[0],xrange[1])
plt.ylim(yrange[0],yrange[1])
xyrange1 = np.arange(xrange[0],xrange[1]+0.01,0.1)
xyrange2 = np.arange(yrange[0],yrange[1]+0.01,0.1)
plt.tick_params(direction='in')
plt.xticks(xyrange1,fontsize=15,fontname='serif')
plt.yticks(xyrange2,fontsize=15,fontname='serif')
## draw dataset name
plt.text((xrange[0]+xrange[1])/2.0,yrange[0]+0.02,dataset_name,horizontalalignment='center',fontsize=20, fontname='serif',fontweight='bold')
plt.xlabel('Recall',fontsize=20,fontname='serif')
plt.ylabel('Precision',fontsize=20,fontname='serif')
font1 = {'family': 'serif',
'weight': 'normal',
'size': 7,
}
handles, labels = plt.gca().get_legend_handles_labels()
order = [len(handles)-x for x in range(1,len(handles)+1)]
plt.legend([handles[idx] for idx in order], [labels[idx] for idx in order],loc='lower left', prop=font1)
plt.grid(linestyle='--')
fig1.savefig(save_dir+dataset_name+"_pr_curves."+save_fmt,bbox_inches='tight',dpi=300)
print('>>PR-curves saved: %s'%(save_dir+dataset_name+"_pr_curves."+save_fmt))
def plot_save_fm_curves(FM, mybins, method_names, lineSylClr, linewidth, xrange=(0.0,1.0), yrange=(0.0,1.0), dataset_name = 'TEST', save_dir = './', save_fmt = 'pdf'):
fig2 = plt.figure(2)
num = FM.shape[0]
for i in range(0,num):
if (len(np.array(FM[i]).shape)!=0):
plt.plot(np.array(mybins[0:-1]).astype(np.float)/255.0, FM[i],lineSylClr[i],linewidth=linewidth[i],label=method_names[i])
plt.xlim(xrange[0],xrange[1])
plt.ylim(yrange[0],yrange[1])
xyrange1 = np.arange(xrange[0],xrange[1]+0.01,0.1)
xyrange2 = np.arange(yrange[0],yrange[1]+0.01,0.1)
plt.tick_params(direction='in')
plt.xticks(xyrange1,fontsize=15,fontname='serif')
plt.yticks(xyrange2,fontsize=15,fontname='serif')
## draw dataset name
plt.text((xrange[0]+xrange[1])/2.0,yrange[0]+0.02,dataset_name,horizontalalignment='center',fontsize=20, fontname='serif',fontweight='bold')
plt.xlabel('Thresholds',fontsize=20,fontname='serif')
plt.ylabel('F-measure',fontsize=20,fontname='serif')
font1 = {'family': 'serif',
'weight': 'normal',
'size': 7,
}
handles, labels = plt.gca().get_legend_handles_labels()
order = [len(handles)-x for x in range(1,len(handles)+1)]
plt.legend([handles[idx] for idx in order], [labels[idx] for idx in order],loc='lower left', prop=font1)
plt.grid(linestyle='--')
fig2.savefig(save_dir+dataset_name+"_fm_curves."+save_fmt,bbox_inches='tight',dpi=300)
print('>>F-measure curves saved: %s'%(save_dir+dataset_name+"_fm_curves."+save_fmt))