forked from panjf2000/ants
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpool_func.go
310 lines (267 loc) · 8.3 KB
/
pool_func.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// MIT License
// Copyright (c) 2018 Andy Pan
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
package ants
import (
"sync"
"sync/atomic"
"time"
)
// PoolWithFunc accept the tasks from client, it limits the total of goroutines to a given number by recycling goroutines.
type PoolWithFunc struct {
// capacity of the pool.
capacity int32
// running is the number of the currently running goroutines.
running int32
// expiryDuration set the expired time (second) of every worker.
expiryDuration time.Duration
// workers is a slice that store the available workers.
workers []*goWorkerWithFunc
// release is used to notice the pool to closed itself.
release int32
// lock for synchronous operation.
lock sync.Mutex
// cond for waiting to get a idle worker.
cond *sync.Cond
// poolFunc is the function for processing tasks.
poolFunc func(interface{})
// once makes sure releasing this pool will just be done for one time.
once sync.Once
// workerCache speeds up the obtainment of the an usable worker in function:retrieveWorker.
workerCache sync.Pool
// panicHandler is used to handle panics from each worker goroutine.
// if nil, panics will be thrown out again from worker goroutines.
panicHandler func(interface{})
// Max number of goroutine blocking on pool.Submit.
// 0 (default value) means no such limit.
maxBlockingTasks int32
// goroutine already been blocked on pool.Submit
// protected by pool.lock
blockingNum int32
// When nonblocking is true, Pool.Submit will never be blocked.
// ErrPoolOverload will be returned when Pool.Submit cannot be done at once.
// When nonblocking is true, MaxBlockingTasks is inoperative.
nonblocking bool
}
// Clear expired workers periodically.
func (p *PoolWithFunc) periodicallyPurge() {
heartbeat := time.NewTicker(p.expiryDuration)
defer heartbeat.Stop()
var expiredWorkers []*goWorkerWithFunc
for range heartbeat.C {
if atomic.LoadInt32(&p.release) == CLOSED {
break
}
currentTime := time.Now()
p.lock.Lock()
idleWorkers := p.workers
n := len(idleWorkers)
var i int
for i = 0; i < n && currentTime.Sub(idleWorkers[i].recycleTime) > p.expiryDuration; i++ {
}
expiredWorkers = append(expiredWorkers[:0], idleWorkers[:i]...)
if i > 0 {
m := copy(idleWorkers, idleWorkers[i:])
for i = m; i < n; i++ {
idleWorkers[i] = nil
}
p.workers = idleWorkers[:m]
}
p.lock.Unlock()
// Notify obsolete workers to stop.
// This notification must be outside the p.lock, since w.task
// may be blocking and may consume a lot of time if many workers
// are located on non-local CPUs.
for i, w := range expiredWorkers {
w.args <- nil
expiredWorkers[i] = nil
}
// There might be a situation that all workers have been cleaned up(no any worker is running)
// while some invokers still get stuck in "p.cond.Wait()",
// then it ought to wakes all those invokers.
if p.Running() == 0 {
p.cond.Broadcast()
}
}
}
// NewPoolWithFunc generates an instance of ants pool with a specific function.
func NewPoolWithFunc(size int, pf func(interface{}), options ...Option) (*PoolWithFunc, error) {
if size <= 0 {
return nil, ErrInvalidPoolSize
}
if pf == nil {
return nil, ErrLackPoolFunc
}
opts := new(Options)
for _, option := range options {
option(opts)
}
if expiry := opts.ExpiryDuration; expiry < 0 {
return nil, ErrInvalidPoolExpiry
} else if expiry == 0 {
opts.ExpiryDuration = time.Duration(DEFAULT_CLEAN_INTERVAL_TIME) * time.Second
}
var p *PoolWithFunc
if opts.PreAlloc {
p = &PoolWithFunc{
capacity: int32(size),
expiryDuration: opts.ExpiryDuration,
poolFunc: pf,
workers: make([]*goWorkerWithFunc, 0, size),
nonblocking: opts.Nonblocking,
maxBlockingTasks: int32(opts.MaxBlockingTasks),
panicHandler: opts.PanicHandler,
}
} else {
p = &PoolWithFunc{
capacity: int32(size),
expiryDuration: opts.ExpiryDuration,
poolFunc: pf,
nonblocking: opts.Nonblocking,
maxBlockingTasks: int32(opts.MaxBlockingTasks),
panicHandler: opts.PanicHandler,
}
}
p.cond = sync.NewCond(&p.lock)
// Start a goroutine to clean up expired workers periodically.
go p.periodicallyPurge()
return p, nil
}
//---------------------------------------------------------------------------
// Invoke submits a task to pool.
func (p *PoolWithFunc) Invoke(args interface{}) error {
if atomic.LoadInt32(&p.release) == CLOSED {
return ErrPoolClosed
}
if w := p.retrieveWorker(); w == nil {
return ErrPoolOverload
} else {
w.args <- args
}
return nil
}
// Running returns the number of the currently running goroutines.
func (p *PoolWithFunc) Running() int {
return int(atomic.LoadInt32(&p.running))
}
// Free returns a available goroutines to work.
func (p *PoolWithFunc) Free() int {
return int(atomic.LoadInt32(&p.capacity) - atomic.LoadInt32(&p.running))
}
// Cap returns the capacity of this pool.
func (p *PoolWithFunc) Cap() int {
return int(atomic.LoadInt32(&p.capacity))
}
// Tune change the capacity of this pool.
func (p *PoolWithFunc) Tune(size int) {
if p.Cap() == size {
return
}
atomic.StoreInt32(&p.capacity, int32(size))
}
// Release Closed this pool.
func (p *PoolWithFunc) Release() {
p.once.Do(func() {
atomic.StoreInt32(&p.release, 1)
p.lock.Lock()
idleWorkers := p.workers
for i, w := range idleWorkers {
w.args <- nil
idleWorkers[i] = nil
}
p.workers = nil
p.lock.Unlock()
})
}
//---------------------------------------------------------------------------
// incRunning increases the number of the currently running goroutines.
func (p *PoolWithFunc) incRunning() {
atomic.AddInt32(&p.running, 1)
}
// decRunning decreases the number of the currently running goroutines.
func (p *PoolWithFunc) decRunning() {
atomic.AddInt32(&p.running, -1)
}
// retrieveWorker returns a available worker to run the tasks.
func (p *PoolWithFunc) retrieveWorker() *goWorkerWithFunc {
var w *goWorkerWithFunc
spawnWorker := func() {
if cacheWorker := p.workerCache.Get(); cacheWorker != nil {
w = cacheWorker.(*goWorkerWithFunc)
} else {
w = &goWorkerWithFunc{
pool: p,
args: make(chan interface{}, workerChanCap),
}
}
w.run()
}
p.lock.Lock()
idleWorkers := p.workers
n := len(idleWorkers) - 1
if n >= 0 {
w = idleWorkers[n]
idleWorkers[n] = nil
p.workers = idleWorkers[:n]
p.lock.Unlock()
} else if p.Running() < p.Cap() {
p.lock.Unlock()
spawnWorker()
} else {
if p.nonblocking {
p.lock.Unlock()
return nil
}
Reentry:
if p.maxBlockingTasks != 0 && p.blockingNum >= p.maxBlockingTasks {
p.lock.Unlock()
return nil
}
p.blockingNum++
p.cond.Wait()
p.blockingNum--
if p.Running() == 0 {
p.lock.Unlock()
spawnWorker()
return w
}
l := len(p.workers) - 1
if l < 0 {
goto Reentry
}
w = p.workers[l]
p.workers[l] = nil
p.workers = p.workers[:l]
p.lock.Unlock()
}
return w
}
// revertWorker puts a worker back into free pool, recycling the goroutines.
func (p *PoolWithFunc) revertWorker(worker *goWorkerWithFunc) bool {
if atomic.LoadInt32(&p.release) == CLOSED || p.Running() > p.Cap() {
return false
}
worker.recycleTime = time.Now()
p.lock.Lock()
p.workers = append(p.workers, worker)
// Notify the invoker stuck in 'retrieveWorker()' of there is an available worker in the worker queue.
p.cond.Signal()
p.lock.Unlock()
return true
}