-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLISA.py
executable file
·411 lines (360 loc) · 15.4 KB
/
LISA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
from typing import List
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import BitsAndBytesConfig, CLIPVisionModel
from typing import Optional
# from utils.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN,
# DEFAULT_IMAGE_PATCH_TOKEN)
sys.path.append("/home/xuli/llava_alfred/")
from llava.model.language_model.llava_llama import (LlavaLlamaForCausalLM, LlavaLlamaModel)
from segment_anything import build_sam_vit_h
def dice_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
scale=1000, # 100000.0,
eps=1e-6,
):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1, 2)
targets = targets.flatten(1, 2)
numerator = 2 * (inputs / scale * targets).sum(-1)
denominator = (inputs / scale).sum(-1) + (targets / scale).sum(-1)
loss = 1 - (numerator + eps) / (denominator + eps)
loss = loss.sum() / (num_masks + 1e-8)
return loss
def sigmoid_ce_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
):
"""
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
Loss tensor
"""
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
loss = loss.flatten(1, 2).mean(1).sum() / (num_masks + 1e-8)
return loss
def decompress_mask(compressed_mask):
'''
decompress compressed mask array
'''
mask = torch.zeros(300, 300)
for start_idx, run_len in compressed_mask:
for idx in range(start_idx, start_idx + run_len):
mask[idx // 300, idx % 300] = 1
return mask
class LisaMetaModel:
def __init__(
self,
config,
**kwargs,
):
super(LisaMetaModel, self).__init__(config)
self.config = config
if not hasattr(self.config, "train_mask_decoder"):
self.config.train_mask_decoder = kwargs["train_mask_decoder"]
self.config.out_dim = kwargs["out_dim"]
self.vision_pretrained = kwargs.get("vision_pretrained", None)
else:
self.vision_pretrained = kwargs.get("vision_pretrained", None)
self.initialize_lisa_modules(self.config)
def initialize_lisa_modules(self, config):
# SAM
self.visual_model = build_sam_vit_h(self.vision_pretrained)
for param in self.visual_model.parameters():
param.requires_grad = False
if config.train_mask_decoder:
self.visual_model.mask_decoder.train()
for param in self.visual_model.mask_decoder.parameters():
param.requires_grad = True
# Projection layer
in_dim = config.hidden_size
out_dim = config.out_dim
text_fc = [
nn.Linear(in_dim, in_dim),
nn.ReLU(inplace=True),
nn.Linear(in_dim, out_dim),
nn.Dropout(0.0),
]
self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_fc)])
self.text_hidden_fcs.train()
for param in self.text_hidden_fcs.parameters():
param.requires_grad = True
class LisaModel(LisaMetaModel, LlavaLlamaModel):
def __init__(
self,
config,
**kwargs,
):
super(LisaModel, self).__init__(config, **kwargs)
self.config.use_cache = False
# self.config.vision_tower = self.config.mm_vision_tower
self.config.mm_vision_select_feature = "patch"
self.config.image_aspect_ratio = "square"
self.config.image_grid_pinpoints = None
self.config.tune_mm_mlp_adapter = False
self.config.freeze_mm_mlp_adapter = True
self.config.pretrain_mm_mlp_adapter = None
self.config.mm_use_im_patch_token = False
class LISAForCausalLM(LlavaLlamaForCausalLM):
def __init__(
self,
config,
**kwargs,
):
if not hasattr(config, "train_mask_decoder"):
self.ce_loss_weight = kwargs.pop("ce_loss_weight", None)
self.dice_loss_weight = kwargs.pop("dice_loss_weight", None)
self.bce_loss_weight = kwargs.pop("bce_loss_weight", None)
# self.obj_token_idx = kwargs.pop("obj_token_idx")
self.action_token_idx = kwargs.pop("action_token_idx")
super().__init__(config)
self.model = LisaModel(config, **kwargs)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_visual_embs(self, images, obj_positions):
with torch.no_grad():
with torch.autocast(device_type="cuda"):
image_embeddings_list = []
for batch_idx in range(len(images)):
for i in obj_positions[batch_idx]:
torch.cuda.empty_cache()
sam_image = F.interpolate(images[batch_idx][i].unsqueeze(0), size=(1024, 1024), mode="bilinear")
image_embeddings = self.model.visual_model.image_encoder(sam_image)
image_embeddings_list.append(image_embeddings)
torch.cuda.empty_cache()
return image_embeddings_list
def forward(self, **kwargs):
if "past_key_values" in kwargs:
return super().forward(**kwargs)
return self.model_forward(**kwargs)
def model_forward(
self,
images,
orig_images,
tokenizer,
input_ids: torch.LongTensor,
labels: Optional[torch.LongTensor] = None,
obj_positions: List[List[int]] = None, # 要预测的物体mask在当前任务的第几个动作
obj_bboxes: List[List[int]] = None, # ground-truth bboxes of objects to be segmented
obj_masks: List[List[torch.FloatTensor]] = None, # ground-truth mask of objects to be segmented
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
):
# copyied from llava_llama.py
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
image_embeddings_list = self.get_visual_embs(orig_images, obj_positions)
batch_size = labels.size()[0]
# decompress masks
masks_list = []
for single_sample_masks in obj_masks:
for obj_mask in single_sample_masks:
masks_list.append(decompress_mask(obj_mask).to(self.device))
inference = False
if inference:
n_batch = 1
length = input_ids.shape[0]
assert images_clip.shape[0] == 1
images_clip_extend = images_clip.expand(length, -1, -1, -1).contiguous()
output_hidden_states = []
for i in range(n_batch):
start_i, end_i = i * length, min((i + 1) * length, input_ids.shape[0])
output_i = super().forward(
images=images_clip_extend[: end_i - start_i],
attention_mask=attention_mask[start_i:end_i],
input_ids=input_ids[start_i:end_i],
output_hidden_states=True,
)
output_hidden_states.append(output_i.hidden_states)
torch.cuda.empty_cache()
output_hidden_states_list = []
output_hidden_states_level = torch.cat(output_hidden_states, dim=0)
output_hidden_states_list.append(output_hidden_states_level)
output_hidden_states = output_hidden_states_list
output = None
else:
output, shift_labels = super().forward(
images=images,
attention_mask=attention_mask,
input_ids=input_ids,
labels=labels,
output_hidden_states=True,
)
output_hidden_states = output.hidden_states[-1][:, :-1, :] # (batch_size, seq_len-1, hidden_size)
assert len(self.model.text_hidden_fcs) == 1
pred_embeddings = self.model.text_hidden_fcs[0](output_hidden_states)
pred_embeddings_ = []
for batch_idx in range(batch_size):
for i in range(shift_labels.size()[1]):
if shift_labels[batch_idx][i] in self.action_token_idx:
# print("action_token_id: ", shift_labels[batch_idx][i])
pred_embeddings_.append(pred_embeddings[batch_idx][i])
pred_embeddings = pred_embeddings_
multimask_output = False
pred_masks = []
for i in range(len(pred_embeddings)):
(
sparse_embeddings,
dense_embeddings,
) = self.model.visual_model.prompt_encoder(
points=None,
boxes=None,
masks=None,
text_embeds=pred_embeddings[i].unsqueeze(0).unsqueeze(1),
)
sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
low_res_masks, iou_predictions = self.model.visual_model.mask_decoder(
image_embeddings=image_embeddings_list[i],
image_pe=self.model.visual_model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
)
pred_mask = self.model.visual_model.postprocess_masks(
low_res_masks,
input_size=(1024, 1024),
original_size=(300, 300)
)
pred_masks.append(pred_mask[:, 0])
model_output = output
gt_masks = masks_list
if inference:
return {
"pred_masks": pred_masks,
"gt_masks": gt_masks,
}
output = model_output.logits
ce_loss = model_output.loss
ce_loss = ce_loss * self.ce_loss_weight
loss = ce_loss
mask_bce_loss = 0
mask_dice_loss = 0
num_masks = 0
for i in range(len(pred_masks)):
gt_mask = gt_masks[i].unsqueeze(0)
pred_mask = pred_masks[i]
assert (
gt_mask.shape[0] == pred_mask.shape[0]
), "gt_mask.shape: {}, pred_mask.shape: {}".format(
gt_mask.shape, pred_mask.shape
)
mask_bce_loss += (
sigmoid_ce_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0])
* gt_mask.shape[0]
)
mask_dice_loss += (
dice_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0])
* gt_mask.shape[0]
)
num_masks += gt_mask.shape[0]
mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8)
mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8)
mask_loss = mask_bce_loss + mask_dice_loss
loss += mask_loss
return {
"loss": loss,
"ce_loss": ce_loss,
"mask_bce_loss": mask_bce_loss,
"mask_dice_loss": mask_dice_loss,
"mask_loss": mask_loss,
}
# def evaluate(
# self,
# images_clip,
# images,
# input_ids,
# resize_list,
# original_size_list,
# max_new_tokens=32,
# tokenizer=None,
# ):
# with torch.no_grad():
# outputs = self.generate(
# images=images_clip,
# input_ids=input_ids,
# max_new_tokens=max_new_tokens,
# num_beams=1,
# output_hidden_states=True,
# return_dict_in_generate=True,
# )
# output_hidden_states = outputs.hidden_states[-1]
# output_ids = outputs.sequences
# seg_token_mask = output_ids[:, 1:] == self.seg_token_idx
# # hack for IMAGE_TOKEN_INDEX (we suppose that there is only one image, and it is in the front)
# seg_token_mask = torch.cat(
# [
# torch.zeros((seg_token_mask.shape[0], 255)).bool().cuda(),
# seg_token_mask,
# ],
# dim=1,
# )
# hidden_states = []
# assert len(self.model.text_hidden_fcs) == 1
# hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states))
# last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
# pred_embeddings = last_hidden_state[seg_token_mask]
# seg_token_counts = seg_token_mask.int().sum(-1) # [bs, ]
# seg_token_offset = seg_token_counts.cumsum(-1)
# seg_token_offset = torch.cat(
# [torch.zeros(1).long().cuda(), seg_token_offset], dim=0
# )
# pred_embeddings_ = []
# for i in range(len(seg_token_offset) - 1):
# start_i, end_i = seg_token_offset[i], seg_token_offset[i + 1]
# pred_embeddings_.append(pred_embeddings[start_i:end_i])
# pred_embeddings = pred_embeddings_
# image_embeddings = self.get_visual_embs(images)
# multimask_output = False
# pred_masks = []
# for i in range(len(pred_embeddings)):
# (
# sparse_embeddings,
# dense_embeddings,
# ) = self.model.visual_model.prompt_encoder(
# points=None,
# boxes=None,
# masks=None,
# text_embeds=pred_embeddings[i].unsqueeze(1),
# )
# sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
# low_res_masks, iou_predictions = self.model.visual_model.mask_decoder(
# image_embeddings=image_embeddings[i].unsqueeze(0),
# image_pe=self.model.visual_model.prompt_encoder.get_dense_pe(),
# sparse_prompt_embeddings=sparse_embeddings,
# dense_prompt_embeddings=dense_embeddings,
# multimask_output=multimask_output,
# )
# pred_mask = self.model.visual_model.postprocess_masks(
# low_res_masks,
# input_size=resize_list[i],
# original_size=original_size_list[i],
# )
# pred_masks.append(pred_mask[:, 0])
# return output_ids, pred_masks