Skip to content

Latest commit

 

History

History
322 lines (225 loc) · 11.8 KB

Android的UI显示原理之Surface的渲染.md

File metadata and controls

322 lines (225 loc) · 11.8 KB

本文内容接着上一篇文章Android的UI显示原理之Surface的创建继续来看Surface渲染的大致过程。

对于Surface的渲染可以转化为ViewRootImpl的渲染。因此我们从ViewRootImpl.draw()来看一下它的渲染逻辑。这个方法最终会调用到ViewRootImpl.drawSoftward():

private boolean drawSoftware(Surface surface, AttachInfo attachInfo,...) {
    // Draw with software renderer.
    final Canvas canvas;
    ...
    canvas = mSurface.lockCanvas(dirty);  //step 1
    ...
    mView.draw(canvas);  //setp 2
    ...
    mSurface.unlockCanvasAndPost(canvas);  //step 3
}

mViewViewRootImpl的根ViewmSurface即为上一篇文章分析的所创建的Surface,它的实际对象在nativie层。

上面3步大致描绘了ViewRootImpl的绘制原理,本文就逐一分析这3步,来大致了解ViewRootImpl的渲染逻辑。

mSurface.lockCanvas()

public Canvas lockCanvas(Rect inOutDirty){
    ...
    mLockedObject = nativeLockCanvas(mNativeObject, mCanvas, inOutDirty);
    return mCanvas;
}

这个方法会直接调用到native方法nativeLockCanvas(mNativeObject, mCanvas, inOutDirty)

mNativeObject就是Surface创建时对应的nativeSurface指针,inOutDirty指明了lock的区域。

android_view_Surface.cpp

static jlong nativeLockCanvas(JNIEnv* env, jclass clazz,jlong nativeObject, jobject canvasObj, jobject dirtyRectObj) {
    sp<Surface> surface(reinterpret_cast<Surface *>(nativeObject)); //转换指针
    ...
    Rect dirtyRect(Rect::EMPTY_RECT);
    Rect* dirtyRectPtr = NULL;

    //获取 lock 区域
    if (dirtyRectObj) {
        dirtyRect.left   = env->GetIntField(dirtyRectObj, gRectClassInfo.left);
        dirtyRect.top    = env->GetIntField(dirtyRectObj, gRectClassInfo.top);
        dirtyRect.right  = env->GetIntField(dirtyRectObj, gRectClassInfo.right);
        dirtyRect.bottom = env->GetIntField(dirtyRectObj, gRectClassInfo.bottom);
        dirtyRectPtr = &dirtyRect;
    }

    ANativeWindow_Buffer outBuffer;
    status_t err = surface->lock(&outBuffer, dirtyRectPtr);
    ...

    sp<Surface> lockedSurface(surface);
    return (jlong) lockedSurface.get(); //返回surface指针
}

这个方法主要新建了一个Rect对象,确定要lock的区域的参数,然后调用surface->lock(&outBuffer, dirtyRectPtr):

Surface.cpp

status_t Surface::lock(ANativeWindow_Buffer* outBuffer, ARect* inOutDirtyBounds){

    ANativeWindowBuffer* out; int fenceFd = -1;
    status_t err = dequeueBuffer(&out, &fenceFd);  //从 GraphicBufferProduce 中 拿出来一个 buffer 

    sp<GraphicBuffer> backBuffer(GraphicBuffer::getSelf(out));  // 构建一个 backbuffer

    status_t res = backBuffer->lockAsync(...);
}

可以看出lock方法,首先通过dequeueBuffer来获取一个ANativeWindowBuffer,然后利用它构造一个GraphicBuffer,它被称为backBuffer,然后调用它的backBuffer->lockAsync(...),那么怎么获取一个ANativeWindowBuffer呢?

dequeueBuffer()

Surface.cpp


int Surface::dequeueBuffer(android_native_buffer_t** buffer, int* fenceFd) {

    ...
    status_t result = mGraphicBufferProducer->dequeueBuffer(&buf, &fence, reqWidth, reqHeight,
                                                            reqFormat, reqUsage, &mBufferAge,
                                                            enableFrameTimestamps ? &frameTimestamps
                                                                                  : nullptr);
    ...经过一系列的操作,buffer最终会指向&buf
}

我们上一篇文章中已经介绍过了GraphicBufferProducer,它是一个Layergraphic buffer producerLayer在绘制时,会从GraphicBufferProducer取出一个GraphicBuffer来绘制。所以可以理解为GraphicBufferProducer存放着一个Layer待绘制的一帧。dequeueBuffer()所做的事情就是:从GraphicBufferProducer取出一个GraphicBuffer

至于backBuffer->lockAsync(...)所做的操作就不细看了,可以猜想就是把这个GraphicBuffer锁上,保证一个GraphicBuffer绘制操作的不可重入。

综上,surface.lockCanvas()的主要逻辑可以使用下面这张图来表示:

mSurface.lockCanvas最终是lock了一个GraphicBuffer。继续看mView.draw(canvas):

mView.draw(canvas)

View.draw(canvas)所做的事情其实就是:根据View的状态来把带绘制的数据保存到Canvas。对Canvas我们到最后再来看一下它和Surface的关系。

mSurface.unlockCanvasAndPost(canvas)

canvas的绘制数据准备ok后,Surface就可以开始绘制了,而绘制操作的发起点就是Surface.unlockCanvasAndPost()方法,这个方法会调用到:

private void unlockSwCanvasAndPost(Canvas canvas) {
    ...
    try {
        nativeUnlockCanvasAndPost(mLockedObject, canvas); //mLockedObject其实就是native的那个surface
    } finally {
        nativeRelease(mLockedObject);
        mLockedObject = 0;
    }
}

继续看nativeUnlockCanvasAndPost()

android_view_Surface.cpp

static void nativeUnlockCanvasAndPost(JNIEnv* env, jclass clazz,jlong nativeObject, jobject canvasObj) { 
    sp<Surface> surface(reinterpret_cast<Surface*>(nativeObject));
    ...
    // detach the canvas from the surface
    Canvas* nativeCanvas = GraphicsJNI::getNativeCanvas(env, canvasObj);  // 把java canvas指针转化为native 指针
    nativeCanvas->setBitmap(SkBitmap());

    // unlock surface
    status_t err = surface->unlockAndPost();
}

即调用了surface->unlockAndPost():

Surface.cpp

status_t Surface::unlockAndPost()
{
    ...
    int fd = -1;
    status_t err = mLockedBuffer->unlockAsync(&fd);

    err = queueBuffer(mLockedBuffer.get(), fd);

    mPostedBuffer = mLockedBuffer;
    mLockedBuffer = 0;
    return err;
}

这里mLockedBuffer其实就是前面的backBuffermLockedBuffer->unlockAsync(&fd)的操作其实很简单,就是解除GraphicBuffer的lock状态,主要看一下queueBuffer(mLockedBuffer.get(), fd)

Surface.cpp

int Surface::queueBuffer(android_native_buffer_t* buffer, int fenceFd) {
    ...
    int i = getSlotFromBufferLocked(buffer); 
    ...
    IGraphicBufferProducer::QueueBufferOutput output;
    IGraphicBufferProducer::QueueBufferInput input(timestamp, isAutoTimestamp,
            static_cast<android_dataspace>(mDataSpace), crop, mScalingMode,
            mTransform ^ mStickyTransform, fence, mStickyTransform,
            mEnableFrameTimestamps);
    ...
    status_t err = mGraphicBufferProducer->queueBuffer(i, input, &output); 
    ...
    mQueueBufferCondition.broadcast();
    return err;
}

对于inputoutput这里先不做细追,我猜测input中应该包含绘制的数据。但getSlotFromBufferLocked(buffer)是干什么的呢?它其实就是获取真正的GraphicBuffer的在mSlots集合中真正的index:

Surface.cpp

int Surface::getSlotFromBufferLocked(android_native_buffer_t* buffer) const {
    for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
        if (mSlots[i].buffer != NULL && mSlots[i].buffer->handle == buffer->handle) {
            return i;
        }
    }
    return BAD_VALUE;
}

对于mSlots集合,可以认为他就是按顺序保存GraphicBuffer的数组即可:

Surface.h

    // mSlots stores the buffers that have been allocated for each buffer slot.
    // It is initialized to null pointers, and gets filled in with the result of
    // IGraphicBufferProducer::requestBuffer when the client dequeues a buffer from a
    // slot that has not yet been used. The buffer allocated to a slot will also
    // be replaced if the requested buffer usage or geometry differs from that
    // of the buffer allocated to a slot.
    BufferSlot mSlots[NUM_BUFFER_SLOTS];

继续看mGraphicBufferProducer->queueBuffer(i, input, &output), 通过上一篇文章已经知道mGraphicBufferProducerBufferQueueProducer的实例:

BufferQueueProducer.cpp

status_t BufferQueueProducer::queueBuffer(int slot, const QueueBufferInput &input, QueueBufferOutput *output) { 

    //从input中获取一些列参数
    input.deflate(&requestedPresentTimestamp, &isAutoTimestamp, &dataSpace,
        &crop, &scalingMode, &transform, &acquireFence, &stickyTransform,
        &getFrameTimestamps);


    sp<IConsumerListener> frameAvailableListener;
    sp<IConsumerListener> frameReplacedListener;
    BufferItem item; //可以理解为一个待渲染的帧

    ...下面就是对item的一系列赋值操作

    item.mAcquireCalled = mSlots[slot].mAcquireCalled; 
    item.mGraphicBuffer = mSlots[slot].mGraphicBuffer; //根据slot获取GraphicBuffer。
    item.mCrop = crop;
    item.mTransform = transform &
            ~static_cast<uint32_t>(NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY);
    item.mTransformToDisplayInverse =
            (transform & NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY) != 0;
    item.mScalingMode = static_cast<uint32_t>(scalingMode);
    item.mTimestamp = requestedPresentTimestamp;
    item.mIsAutoTimestamp = isAutoTimestamp;
    
    ...

    if (frameAvailableListener != NULL) {
        frameAvailableListener->onFrameAvailable(item); //item是一个frame,准备完毕,要通知外界
    } else if (frameReplacedListener != NULL) {
        frameReplacedListener->onFrameReplaced(item);
    }

    addAndGetFrameTimestamps(&newFrameEventsEntry,etFrameTimestamps ? &output->frameTimestamps : nullptr);

    return NO_ERROR;
}

其实从queueBuffer()可以看出,mGraphicBufferProducer中存放的都是可以被渲染的GraphicBuffer,这个buffer可能被渲染完毕,也可能处于待渲染状态。

queueBuffer的主要操作是根据输入参数完善一个BufferItem,然后通知外界去绘制这个BufferItem。这里这个frameAvailableListener是什么呢?有兴趣的同学可以去跟一下, 不过最终回到BufferLayer.onFrameAvailable():

BufferLayer.cpp

// ---------------------------------------------------------------------------
// Interface implementation for SurfaceFlingerConsumer::ContentsChangedListener
// ---------------------------------------------------------------------------
void BufferLayer::onFrameAvailable(const BufferItem& item) {
    ...
    mFlinger->signalLayerUpdate();
}

这个方法直接调用了mFlinger->signalLayerUpdate(),看样是要让SurfaceFlinger来渲染了:

SurfaceFlinger.cpp

void SurfaceFlinger::signalLayerUpdate() {
    mEventQueue->invalidate();
}

至于SurfaceFlinger是如何渲染的,本文就不继续追踪了。用下面这张图总结一下mSurface.unlockCanvasAndPost(canvas):

Canvas与Surface

Canvas是一个绘图的工具类,其API提供了一系列绘图指令供开发者使用。根据绘制加速模式的不同,Canvas有软件Canvas与硬件Canvas只分。Canvas的绘图指令可以分为两个部分:

  • 绘制指令:这些最常用的指令由一系列名为drawXXX的方法提供。他们用来实现实际的绘制行为,例如绘制点、线、圆以及方块等。
  • 辅助指令:这些用于提供辅助功能的指令将会影响后续绘制指令的效果,如设置变换、裁剪区域等。Canvas还提供了saveresotore用于撤销一部分辅助指令的效果。

对于软件Canvas来说,其绘制目标是一个位图Bitmap。在Surface.unlockAndPost时,这个Bitmap所描述的内容会反映到SurfaceBuffer中。可以用下面这张图来表示:

最后:

欢迎关注我的Android进阶计划看更多干货

欢迎关注我的微信公众号:susion随心

参考文章

  • 《深入理解Android 卷3》