-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
209 lines (172 loc) · 8.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.optim as optim
from skimage.metrics import peak_signal_noise_ratio as PSNR
from warmup_scheduler import GradualWarmupScheduler
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import os
import tqdm
import glob
import time
import datetime
from model import RawFormer
from load_dataset import load_data_MCR, load_data_SID
class CharbonnierLoss(nn.Module):
"""Charbonnier Loss (L1)"""
def __init__(self, eps=1e-3):
super(CharbonnierLoss, self).__init__()
self.eps = eps
def forward(self, x, y):
diff = x - y
# loss = torch.sum(torch.sqrt(diff * diff + self.eps))
loss = torch.mean(torch.sqrt((diff * diff) + (self.eps*self.eps)))
return loss
if __name__ == '__main__':
opt = {}
opt['gpu_id'] = '0'
opt={'base_lr':1e-4} # base learning rate
opt['batch_size'] = 16 # batch size
opt['dataset'] = 'SID' # SID/MCR dataset
opt['patch_size'] = 512 # cropped image patch size when training
opt['model_size'] = 'S' # model size, small/base/large --> 32/48/64
opt['epochs'] = 3000 # total training epochs
os.environ["CUDA_VISIBLE_DEVICES"]=opt['gpu_id']
print('GPU id:', os.environ["CUDA_VISIBLE_DEVICES"])
# These are folders
save_weights_file = os.path.join('result', opt['dataset'], 'weights') # save trained models
save_images_file = os.path.join('result', opt['dataset'], 'images') # save tested images
save_csv_file = os.path.join('result', opt['dataset'], 'csv') # save tested images' psnr/ssim
tb_log_dir = os.path.join('result', opt['dataset'], 'logs') # save trained logs
if not os.path.exists(save_weights_file):
os.makedirs(save_weights_file)
if not os.path.exists(save_images_file):
os.makedirs(save_images_file)
if not os.path.exists(save_csv_file):
os.makedirs(save_csv_file)
if not os.path.exists(tb_log_dir):
os.makedirs(tb_log_dir)
use_pretrain = False
pretrain_weights = os.path.join(save_weights_file, 'model_2000.pth')
if opt['dataset'] == 'SID':
train_input_paths = glob.glob(os.path.join('Sony/short/0*_00_0.1s.ARW')) + glob.glob(os.path.join('Sony/short/2*_00_0.1s.ARW'))
train_gt_paths = []
for x in train_input_paths:
train_gt_paths += glob.glob(os.path.join('Sony/long/*' + x[-17:-12] + '*.ARW'))
test_input_paths = glob.glob(os.path.join('Sony/short/1*_00_0.1s.ARW'))
test_gt_paths = []
for x in test_input_paths:
test_gt_paths += glob.glob(os.path.join('Sony/long/*' + x[-17:-12] + '*.ARW'))
# load data
train_data = load_data_SID(train_input_paths, train_gt_paths, patch_size=opt['patch_size'], training=True)
test_data = load_data_SID(test_input_paths, test_gt_paths, patch_size=opt['patch_size'], training=True)
elif opt['dataset'] == 'MCR':
train_c_path = np.load('Mono_Colored_RAW_Paired_DATASET/random_path_list/train/train_c_path.npy')
train_rgb_path = np.load('Mono_Colored_RAW_Paired_DATASET/random_path_list/train/train_rgb_path.npy')
test_c_path = np.load('Mono_Colored_RAW_Paired_DATASET/random_path_list/test/test_c_path.npy')
test_rgb_path = np.load('Mono_Colored_RAW_Paired_DATASET/random_path_list/test/test_rgb_path.npy')
# load data
train_data = load_data_MCR(train_c_path[:32], train_rgb_path[:32], patch_size=opt['patch_size'], training=True)
test_data = load_data_MCR(test_c_path[:32], test_rgb_path[:32], patch_size=opt['patch_size'], training=True)
dataloader_train = DataLoader(train_data, batch_size=opt['batch_size'], shuffle=True, num_workers=16, pin_memory=True)
dataloader_val = DataLoader(test_data, batch_size=opt['batch_size'], shuffle=False, num_workers=16, pin_memory=True)
print('train data: %d batch'%len(dataloader_train))
print('test data: %d batch'%len(dataloader_val))
device = torch.device("cuda")
if opt['model_size'] == 'S':
dim = 32
elif opt['model_size'] == 'B':
dim = 48
else:
dim = 64
model = RawFormer(dim=dim)
print('\nTrainable parameters : {}\n'.format(sum(p.numel() for p in model.parameters() if p.requires_grad)))
print('\nTotal parameters : {}\n'.format(sum(p.numel() for p in model.parameters())))
model = model.to(device)
print('Device on cuda: {}'.format(next(model.parameters()).is_cuda))
start_epoch = 0
end_epoch = opt['epochs']
best_psnr = 0
best_epoch = 0
######### Loss ###########
loss_criterion = torch.nn.L1Loss()
######### Scheduler ###########
optimizer = torch.optim.Adam(model.parameters(), lr=opt['base_lr'])
if use_pretrain:
checkpoint = torch.load(pretrain_weights)
model.load_state_dict(checkpoint["state_dict"], strict=False)
start_epoch = checkpoint['epoch'] + 1
print("Using warmup and cosine strategy!")
warmup_epochs = 20
scheduler_cosine = optim.lr_scheduler.CosineAnnealingLR(optimizer, end_epoch-warmup_epochs, eta_min=1e-5)
scheduler = GradualWarmupScheduler(optimizer, multiplier=1, total_epoch=warmup_epochs, after_scheduler=scheduler_cosine)
torch.cuda.empty_cache()
loss_scaler = torch.cuda.amp.GradScaler() # 计算loss时用到的梯度scaler
writer_dict = {
'writer': SummaryWriter(log_dir=tb_log_dir),
'valid_PSNR': 0,
# 'valid_SSIM': 0,
'best_PSNR': 0,
'best_epoch': 0,
'epoch_time': 0,
'epoch_loss': 0,
'epoch_LR': 0,
}
for epoch in range(start_epoch, end_epoch + 1):
epoch_start_time = time.time()
epoch_loss = 0
for i, img in enumerate(tqdm.tqdm(dataloader_train)):
optimizer.zero_grad()
input_raw = img[0].to(device)
gt_rgb = img[1].to(device)
with torch.cuda.amp.autocast():
pred_rgb = model(input_raw)
pred_rgb = torch.clamp(pred_rgb, 0, 1)
loss = loss_criterion(pred_rgb, gt_rgb)
loss_scaler.scale(loss).backward()
loss_scaler.step(optimizer)
loss_scaler.update()
epoch_loss += loss.item()
scheduler.step()
#### Evaluation ####
with torch.no_grad():
model.eval()
psnr_val_rgb = []
for ii, data_val in enumerate(tqdm.tqdm(dataloader_val)):
input_raw = data_val[0].to(device)
gt_rgb = data_val[1].to(device)
with torch.cuda.amp.autocast():
pred_rgb = model(input_raw)
pred_rgb = torch.clamp(pred_rgb, 0, 1)
psnr_val_rgb.append(PSNR((data_val[1].numpy().transpose(0, 2, 3, 1)*255).astype(np.uint8),
(pred_rgb.detach().cpu().numpy().transpose(0, 2, 3, 1)*255).astype(np.uint8)))
psnr_val_rgb = sum(psnr_val_rgb) / len(dataloader_val)
if psnr_val_rgb > best_psnr:
best_psnr = psnr_val_rgb
best_epoch = epoch
torch.save({'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}, os.path.join(save_weights_file, "model_best.pth"))
print("------------------------------------------------------------------")
print("[PSNR SID: %.4f] ---- [best_Ep_SID: %d, Best_PSNR_SID: %.4f] " % (psnr_val_rgb, best_epoch, best_psnr))
model.train()
print("------------------------------------------------------------------")
print("Epoch: {}\tTime: {:.4f}\tLoss: {:.4f}\tLearningRate {:.6f}".format(epoch, time.time() - epoch_start_time,epoch_loss, scheduler.get_lr()[0]))
print("------------------------------------------------------------------")
if writer_dict:
writer = writer_dict['writer']
writer.add_scalar('valid_PSNR', psnr_val_rgb, epoch)
writer.add_scalar('best_PSNR', best_psnr, epoch)
writer.add_scalar('best_epoch', best_epoch, epoch)
writer.add_scalar('epoch_time', time.time() - epoch_start_time, epoch)
writer.add_scalar('epoch_loss', epoch_loss, epoch)
writer.add_scalar('epoch_LR', scheduler.get_lr()[0], epoch)
if epoch == end_epoch:
torch.save({'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}, os.path.join(save_weights_file, "model_{}.pth".format(epoch)))
print("Now time is : ", datetime.datetime.now().isoformat())
print('Model saved in: ', save_weights_file)