-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathccf_2020_qa_match_pair.py
198 lines (154 loc) · 5.49 KB
/
ccf_2020_qa_match_pair.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# -*- coding: utf-8 -*-
# @Date : 2020/11/3
# @Author : mingming.xu
# @Email : xv44586@gmail.com
# @File : ccf_2020_qa_match_pair.py
"""
拆成query-pair 对,然后分类
线上f1:0.752
tips:
切换模型时,修改对应config_path/checkpoint_path/dict_path路径以及build_transformer_model 内的参数
"""
import os
from tqdm import tqdm
import numpy as np
from toolkit4nlp.utils import *
from toolkit4nlp.models import *
from toolkit4nlp.layers import *
from toolkit4nlp.optimizers import *
from toolkit4nlp.tokenizers import Tokenizer
from toolkit4nlp.backend import *
batch_size = 16
maxlen = 280
epochs = 10
lr = 1e-5
# bert配置
config_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm/bert_config.json'
checkpoint_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm/model.ckpt'
dict_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm//vocab.txt'
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)
path = '/home/mingming.xu/datasets/NLP/ccf_qa_match/'
def load_data(train_test='train'):
D = {}
with open(os.path.join(path, train_test, train_test + '.query.tsv')) as f:
for l in f:
span = l.strip().split('\t')
D[span[0]] = {'query': span[1], 'reply': []}
with open(os.path.join(path, train_test, train_test + '.reply.tsv')) as f:
for l in f:
span = l.strip().split('\t')
if len(span) == 4:
q_id, r_id, r, label = span
else:
label = None
q_id, r_id, r = span
D[q_id]['reply'].append([r_id, r, label])
d = []
for k, v in D.items():
q_id = k
q = v['query']
reply = v['reply']
for r in reply:
r_id, rc, label = r
d.append([q_id, q, r_id, rc, label])
return d
train_data = load_data('train')
test_data = load_data('test')
class data_generator(DataGenerator):
def __iter__(self, shuffle=False):
batch_token_ids, batch_segment_ids, batch_labels = [], [], []
for is_end, (q_id, q, r_id, r, label) in self.get_sample(shuffle):
label = int(label) if label is not None else None
token_ids, segment_ids = tokenizer.encode(q, r, maxlen=256)
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
batch_labels.append([label])
if is_end or len(batch_token_ids) == self.batch_size:
batch_token_ids = pad_sequences(batch_token_ids)
batch_segment_ids = pad_sequences(batch_segment_ids)
batch_labels = pad_sequences(batch_labels)
yield [batch_token_ids, batch_segment_ids], batch_labels
batch_token_ids, batch_segment_ids, batch_labels = [], [], []
# shuffle
np.random.shuffle(train_data)
n = int(len(train_data) * 0.8)
train_generator = data_generator(train_data[:n], batch_size)
valid_generator = data_generator(train_data[n:], batch_size)
test_generator = data_generator(test_data, batch_size)
# 加载预训练模型
bert = build_transformer_model(
config_path=config_path,
checkpoint_path=checkpoint_path,
# model='bert', # 加载bert/Roberta/ernie
# model='electra', # 加载electra
model='nezha', # 加载NEZHA
)
output = bert.output
output = Dropout(0.5)(output)
att = AttentionPooling1D(name='attention_pooling_1')(output)
output = ConcatSeq2Vec()([output, att])
output = DGCNN(dilation_rate=1, dropout_rate=0.1)(output)
output = DGCNN(dilation_rate=2, dropout_rate=0.1)(output)
output = DGCNN(dilation_rate=5, dropout_rate=0.1)(output)
output = Lambda(lambda x: x[:, 0])(output)
output = Dense(1, activation='sigmoid')(output)
model = keras.models.Model(bert.input, output)
model.summary()
model.compile(
loss=K.binary_crossentropy,
optimizer=Adam(2e-5), # 用足够小的学习率
metrics=['accuracy'],
)
def evaluate(data):
P, R, TP = 0., 0., 0.
for x_true, y_true in tqdm(data):
y_pred = model.predict(x_true)[:, 0]
y_pred = np.round(y_pred)
y_true = y_true[:, 0]
R += y_pred.sum()
P += y_true.sum()
TP += ((y_pred + y_true) > 1).sum()
print(P, R, TP)
pre = TP / R
rec = TP / P
return 2 * (pre * rec) / (pre + rec)
class Evaluator(keras.callbacks.Callback):
"""评估与保存
"""
def __init__(self):
self.best_val_f1 = 0.
def on_epoch_end(self, epoch, logs=None):
val_f1 = evaluate(valid_generator)
if val_f1 > self.best_val_f1:
self.best_val_f1 = val_f1
model.save_weights('best_parimatch_model.weights')
print(
u'val_f1: %.5f, best_val_f1: %.5f\n' %
(val_f1, self.best_val_f1)
)
def predict_to_file(path='pair_submission.tsv', data=test_generator):
preds = []
for x, _ in tqdm(test_generator):
pred = model.predict(x)[:, 0]
pred = np.round(pred)
pred = pred.astype(int)
preds.extend(pred)
ret = []
for d, p in zip(test_data, preds):
q_id, _, r_id, _, _ = d
ret.append([str(q_id), str(r_id), str(p)])
with open(path, 'w', encoding='utf8') as f:
for l in ret:
f.write('\t'.join(l) + '\n')
if __name__ == '__main__':
evaluator = Evaluator()
model.fit_generator(
train_generator.generator(),
steps_per_epoch=len(train_generator),
epochs=5,
callbacks=[evaluator],
)
# predict test and write to file
model.load_weights('best_parimatch_model.weights')
predict_to_file()