-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathr50_nc_sgd_cos_100e_r5_1xNx2_k400.py
157 lines (157 loc) · 4.64 KB
/
r50_nc_sgd_cos_100e_r5_1xNx2_k400.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# model settings
model = dict(
type='SimSiamBaseTracker',
backbone=dict(
type='ResNet',
pretrained=None,
depth=50,
out_indices=(3, ),
norm_cfg=dict(type='SyncBN', requires_grad=True),
norm_eval=False,
zero_init_residual=True),
img_head=dict(
type='SimSiamHead',
in_channels=2048,
norm_cfg=dict(type='SyncBN'),
num_projection_fcs=3,
projection_mid_channels=2048,
projection_out_channels=2048,
num_predictor_fcs=2,
predictor_mid_channels=512,
predictor_out_channels=2048,
with_norm=True,
loss_feat=dict(type='CosineSimLoss', negative=False),
spatial_type='avg'))
# model training and testing settings
train_cfg = dict(intra_video=False)
test_cfg = dict(
precede_frames=20,
topk=10,
temperature=0.07,
strides=(1, 2, 1, 1),
out_indices=(2, ),
neighbor_range=36,
with_first=True,
with_first_neighbor=True,
output_dir='eval_results')
# dataset settings
dataset_type = 'VideoDataset'
dataset_type_val = 'DavisDataset'
data_prefix = 'data/kinetics400/videos_train'
ann_file_train = 'data/kinetics400/kinetics400_train_list_videos.txt'
data_prefix_val = 'data/davis/DAVIS/JPEGImages/480p'
anno_prefix_val = 'data/davis/DAVIS/Annotations/480p'
data_root_val = 'data/davis/DAVIS'
ann_file_val = 'data/davis/DAVIS/ImageSets/davis2017_val_list_rawframes.txt'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False)
train_pipeline = [
dict(type='DecordInit'),
dict(
type='SampleFrames',
clip_len=1,
frame_interval=0,
num_clips=2,
out_of_bound_opt='loop'),
dict(type='DecordDecode'),
dict(
type='RandomResizedCrop',
area_range=(0.2, 1.),
same_across_clip=False,
same_on_clip=False),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(
type='Flip',
flip_ratio=0.5,
same_across_clip=False,
same_on_clip=False),
# dict(
# type='ColorJitter',
# brightness=0.4,
# contrast=0.4,
# saturation=0.4,
# hue=0.1,
# p=0.8,
# same_across_clip=False,
# same_on_clip=False),
# dict(
# type='RandomGrayScale',
# p=0.2,
# same_across_clip=False,
# same_on_clip=False),
# dict(
# type='RandomGaussianBlur',
# p=0.5,
# same_across_clip=False,
# same_on_clip=False),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCTHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs', 'label'])
]
val_pipeline = [
dict(type='SequentialSampleFrames', frame_interval=1),
dict(type='RawFrameDecode'),
dict(type='Resize', scale=(-1, 480), keep_ratio=True),
dict(type='Flip', flip_ratio=0),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCTHW'),
dict(
type='Collect',
keys=['imgs', 'ref_seg_map'],
meta_keys=('frame_dir', 'frame_inds', 'original_shape', 'seg_map')),
dict(type='ToTensor', keys=['imgs', 'ref_seg_map'])
]
data = dict(
videos_per_gpu=32,
workers_per_gpu=16,
val_workers_per_gpu=1,
train=dict(
type='RepeatDataset',
times=5,
dataset=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix=data_prefix,
pipeline=train_pipeline)),
val=dict(
type=dataset_type_val,
ann_file=ann_file_val,
data_prefix=data_prefix_val,
data_root=data_root_val,
anno_prefix=anno_prefix_val,
pipeline=val_pipeline,
test_mode=True),
test=dict(
type=dataset_type_val,
ann_file=ann_file_val,
data_prefix=data_prefix_val,
data_root=data_root_val,
anno_prefix=anno_prefix_val,
pipeline=val_pipeline,
test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
total_epochs = 100
checkpoint_config = dict(interval=1)
evaluation = dict(
interval=1,
metrics='davis',
key_indicator='feat_1.J&F-Mean',
rule='greater')
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook'),
])
# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
find_unused_parameters = False