-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinfer_fast.py
92 lines (62 loc) · 2.65 KB
/
infer_fast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import time
import torch
from PIL import Image
from torch.autograd import Variable
from torchvision import transforms
from nets import DGNLNet_fast
from config import test_raincityscapes_path
from misc import check_mkdir
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
torch.manual_seed(2019)
torch.cuda.set_device(0)
ckpt_path = './ckpt'
exp_name = 'DGNLNet_fast'
args = {
'snapshot': '60000',
'depth_snapshot': ''
}
transform = transforms.Compose([
transforms.Resize([512,1024]),
transforms.ToTensor() ])
root = os.path.join(test_raincityscapes_path, 'test')
#root = '/home/xwhu/Derain/real_rain'
to_pil = transforms.ToPILImage()
def main():
net = DGNLNet_fast().cuda()
if len(args['snapshot']) > 0:
print('load snapshot \'%s\' for testing' % args['snapshot'])
net.load_state_dict(torch.load(os.path.join(ckpt_path, exp_name, args['snapshot'] + '.pth'),
map_location=lambda storage, loc: storage.cuda(0)))
net.eval()
avg_time = 0
with torch.no_grad():
img_list = [img_name for img_name in os.listdir(root)]
for idx, img_name in enumerate(img_list):
check_mkdir(
os.path.join(ckpt_path, exp_name, '(%s) prediction_%s' % (exp_name, args['snapshot'])))
if len(args['depth_snapshot']) > 0:
check_mkdir(
os.path.join(ckpt_path, exp_name, '(%s) prediction_%s' % (exp_name, args['depth_snapshot'])))
img = Image.open(os.path.join(root, img_name)).convert('RGB')
w, h = img.size
img_var = Variable(transform(img).unsqueeze(0)).cuda()
start_time = time.time()
#res, dps = net(img_var)
res = net(img_var)
torch.cuda.synchronize()
# if len(args['depth_snapshot']) > 0:
# depth_res = depth_net(res, depth_optimize = True)
avg_time = avg_time + time.time() - start_time
print('predicting: %d / %d, avg_time: %.5f' % (idx + 1, len(img_list), avg_time/(idx+1)))
result = transforms.Resize((h, w))(to_pil(res.data.squeeze(0).cpu()))
result.save(
os.path.join(ckpt_path, exp_name, '(%s) prediction_%s' % (
exp_name, args['snapshot']), img_name))
# if len(args['depth_snapshot']) > 0:
# depth_result = transforms.Resize((h, w))(to_pil(dps.data.squeeze(0).cpu()))
# depth_result.save(
# os.path.join(ckpt_path, exp_name, '(%s) prediction_%s' % (
# exp_name, args['depth_snapshot']), img_name))
if __name__ == '__main__':
main()