forked from bd622/DiscretHashing
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_SDH.m
114 lines (63 loc) · 1.89 KB
/
demo_SDH.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
clear; close;
%addpath [liblinear-1.91/windows/] % for hinge loss
dataset = 'cifar_10_gist';
% prepare_dataset(dataset);
load(['../testbed/',dataset]);
traindata = double(traindata);
testdata = double(testdata);
if sum(traingnd == 0)
traingnd = traingnd + 1;
testgnd = testgnd + 1;
end
Ntrain = size(traindata,1);
% Use all the training data
X = traindata;
label = double(traingnd);
% get anchors
n_anchors = 1000;
% rand('seed',1);
anchor = X(randsample(Ntrain, n_anchors),:);
% % determin rbf width sigma
% Dis = EuDist2(X,anchor,0);
% % sigma = mean(mean(Dis)).^0.5;
% sigma = mean(min(Dis,[],2).^0.5);
% clear Dis
sigma = 0.4; % for normalized data
PhiX = exp(-sqdist(X,anchor)/(2*sigma*sigma));
PhiX = [PhiX, ones(Ntrain,1)];
Phi_testdata = exp(-sqdist(testdata,anchor)/(2*sigma*sigma)); clear testdata
Phi_testdata = [Phi_testdata, ones(size(Phi_testdata,1),1)];
Phi_traindata = exp(-sqdist(traindata,anchor)/(2*sigma*sigma)); clear traindata;
Phi_traindata = [Phi_traindata, ones(size(Phi_traindata,1),1)];
% learn G and F
maxItr = 5;
gmap.lambda = 1; gmap.loss = 'L2';
Fmap.type = 'RBF';
Fmap.nu = 1e-5; % penalty parm for F term
Fmap.lambda = 1e-2;
%% run algo
nbits = 32;
% Init Z
randn('seed',3);
Zinit=sign(randn(Ntrain,nbits));
debug = 0;
[~, F, H] = SDH(PhiX,label,Zinit,gmap,Fmap,[],maxItr,debug);
%% evaluation
display('Evaluation...');
AsymDist = 0; % Use asymmetric hashing or not
if AsymDist
H = H > 0; % directly use the learned bits for training data
else
H = Phi_traindata*F.W > 0;
end
tH = Phi_testdata*F.W > 0;
hammRadius = 2;
B = compactbit(H);
tB = compactbit(tH);
hammTrainTest = hammingDist(tB, B)';
% hash lookup: precision and reall
Ret = (hammTrainTest <= hammRadius+0.00001);
[Pre, Rec] = evaluate_macro(cateTrainTest, Ret)
% hamming ranking: MAP
[~, HammingRank]=sort(hammTrainTest,1);
MAP = cat_apcal(traingnd,testgnd,HammingRank)