-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogicsimulation_cpu.h
95 lines (79 loc) · 2.77 KB
/
logicsimulation_cpu.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
/*
This file contains a simple logic simulation for the CPU with 2 patterns.
This logic simulation is NOT used by the path classification algorithm.
This logic simulation is used when doing a stilefile check.
*/
#ifndef LOGICSIM_FILE
#define LOGICSIM_FILE
#include <boost/foreach.hpp>
#include <boost/algorithm/string.hpp>
#include "graph_structure.h"
#include "helper_functions.h"
#include "hash_maps.h"
#include <vector>
void logic_simlation_cpu(const Graph &g,
const std::vector<unsigned int> &top_sorted_graph,
const std::vector<char> &gate_types_vec,
const boost_bitset::size_type &bppk,
std::vector<boost_bitset> &circuit_states1,
std::vector<boost_bitset> &circuit_states2
)
{
boost_bitset result1(bppk);
boost_bitset result2(bppk);
for (unsigned int topsorted_iterator=0; topsorted_iterator < top_sorted_graph.size(); topsorted_iterator++)
{
if (boost::in_degree(topsorted_iterator, g))
{
auto inEdges = boost::in_edges(topsorted_iterator, g); // Get an iterator to the incident edges of the current node
if (gate_types_vec[topsorted_iterator] == 6) // Gate is an inverter
{
result1 = ~circuit_states1[(*inEdges.first).m_source];
result2 = ~circuit_states2[(*inEdges.first).m_source];
}
else // All the other gates with 2 or more inputs
{
result1 = circuit_states1[(*inEdges.first).m_source];
result2 = circuit_states2[(*inEdges.first).m_source];
++inEdges.first;
if (gate_types_vec[topsorted_iterator] == 1 || gate_types_vec[topsorted_iterator] == 4) // AND and NAND
{
for (; inEdges.first != inEdges.second; ++inEdges.first)
{
result1 &= circuit_states1[(*inEdges.first).m_source];
result2 &= circuit_states2[(*inEdges.first).m_source];
}
if (gate_types_vec[topsorted_iterator] == 1) // if NAND then invert the results
{
result1.flip();
result2.flip();
}
}
else if (gate_types_vec[topsorted_iterator] == 5 || gate_types_vec[topsorted_iterator] == 2) // OR and NOR casse
{
for (; inEdges.first != inEdges.second; ++inEdges.first)
{
result1 |= circuit_states1[(*inEdges.first).m_source];
result2 |= circuit_states2[(*inEdges.first).m_source];
}
if (gate_types_vec[topsorted_iterator] == 2) // if NOR then invert the results
{
result1.flip();
result2.flip();
}
}
else if (gate_types_vec[topsorted_iterator] == 3) // XOR
{
for (; inEdges.first != inEdges.second; ++inEdges.first)
{
result1 ^= circuit_states1[(*inEdges.first).m_source];
result2 ^= circuit_states2[(*inEdges.first).m_source];
}
}
}
circuit_states1[topsorted_iterator] = std::move(result1);
circuit_states2[topsorted_iterator] = std::move(result2);
}
}
}
#endif