-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathconv.py
88 lines (68 loc) · 3.26 KB
/
conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch
from torch.nn import Parameter
from torch_scatter import scatter_add
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.utils import add_remaining_self_loops, remove_self_loops
from torch_geometric.nn.inits import glorot, zeros
class IConv(MessagePassing):
"""
This `IConv` is modified from the `torch.geometric.nn.GCNConv`.
The `bias` matrix is removed, and `weight` matrix is replaced by an untrainable Identity matrix directly.
"""
def __init__(self, in_channels, out_channels, improved=False, cached=False,
normalize=True, **kwargs):
super(IConv, self).__init__(aggr='add', **kwargs)
self.in_channels = in_channels
self.out_channels = out_channels
self.improved = improved
self.cached = cached
self.normalize = normalize
self.weight = Parameter(torch.eye(in_channels), requires_grad=False)
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
self.cached_result = None
self.cached_num_edges = None
@staticmethod
def norm(edge_index, num_nodes, edge_weight=None, improved=False,
dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype,
device=edge_index.device)
fill_value = 1 if not improved else 2
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self, x, edge_index, edge_weight=None):
x = torch.matmul(x, self.weight)
if self.cached and self.cached_result is not None:
if edge_index.size(1) != self.cached_num_edges:
raise RuntimeError(
'Cached {} number of edges, but found {}. Please '
'disable the caching behavior of this layer by removing '
'the `cached=True` argument in its constructor.'.format(
self.cached_num_edges, edge_index.size(1)))
if not self.cached or self.cached_result is None:
self.cached_num_edges = edge_index.size(1)
if self.normalize:
edge_index, norm = self.norm(edge_index, x.size(self.node_dim),
edge_weight, self.improved,
x.dtype)
else:
norm = edge_weight
self.cached_result = edge_index, norm
edge_index, norm = self.cached_result
return self.propagate(edge_index, x=x, norm=norm)
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j if norm is not None else x_j
def update(self, aggr_out):
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.in_channels,
self.out_channels)