-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathconfig.py
65 lines (57 loc) · 3.34 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import argparse
import getpass
import sys
class Config():
def __init__(self, args):
'''
convert Namespace to Config object
:param args:
'''
var = vars(args)
for k, v in var.items():
setattr(self, k, v)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--devices', type=list, default=[2, 3], help='Available GPU')
parser.add_argument('--num_exp', type=int, default=4, help='Number of experiment')
parser.add_argument('--num_device', type=int, default=2, help='Number of GPU, change to 0 if not using CPU')
parser.add_argument('--device', type=int, default=-1, help='Device id')
parser.add_argument('--gpu_memory_fraction', type=float, default=1.0, help='fraction of gpu memory per process')
parser.add_argument('--batch_gpu_process', type=int, default= 1, help='Number of processes allowed on one GPU')
parser.add_argument('--batch_size', type=int, default=1024, help='Batch size')
parser.add_argument('--feat_dim', type=int, default=-1, help='Feature dimension')
parser.add_argument('--embed_dim', type=int, default=64, help='Embedding dimension')
parser.add_argument('--encoder_hidden', type=list, default=[256], help='Encoder hidden layer dimension')
parser.add_argument('--decoder_hidden', type=list, default=[256], help='Decoder hidden layer dimension')
parser.add_argument('--transition_function', type=str, default='RI', help='Transition function [T, RI, RW]')
parser.add_argument('--random_walk_step', type=int, default=2, help=None)
parser.add_argument('--alpha', type=float, default=0.9, help='Damping coefficient for propagation process')
parser.add_argument('--lambda_', type=float, default=0.1)
parser.add_argument('--keep_prob', type=float, default=0.4, help='Keep probability of dropout')
parser.add_argument('--BN', type=bool, default=False, help='Apply batch normalization')
parser.add_argument('--lambda_r', type=float, default=1.0, help='Reconstruct loss coefficient')
parser.add_argument('--lambda_c', type=float, default=0.2, help='Clustering loss coefficient')
parser.add_argument('--optimizer', type=str, default='Adam', help='Optimizer [Adam, Momentum, GradientDescent, RMSProp, Adagrad]')
parser.add_argument('--learning_rate', type=float, default=1e-3, help=None)
parser.add_argument('--pre_epoch', type=int, default=1, help=None)
parser.add_argument('--pre_step', type=int, default=1, help=None)
parser.add_argument('--epoch', type=int, default=1, help=None)
parser.add_argument('--step', type=int, default=1, help=None)
parser.add_argument('--epsilon', type=float, default=1.0, help='Annealing hyperparameter for cluster assignment')
parser.add_argument('--dataset', type=str, default='cora', help=None)
parser.add_argument('--dense_graph', type=bool, default=True, help='Set to True when using large graph')
return parser.parse_args()
def init_dir(args):
args.data_dir = base_dir(args)
args.model_dir = args.data_dir + 'model/'
args.feature_file = args.data_dir + 'feature.txt'
args.edge_file = args.data_dir + 'edge.txt'
args.cluster_file = args.data_dir + 'cluster.txt'
args.model_file = args.data_dir + 'model.pkl'
args.plot_file = args.data_dir + 'plot.png'
args.predict_file = args.data_dir + 'prediction.txt'
def base_dir(args):
return 'data/' + args.dataset + '/' if sys.platform == 'darwin' else \
'/shared/data/' + getpass.getuser() + '/DEC/' + args.dataset + '/'
args = parse_args()
init_dir(args)