-
Notifications
You must be signed in to change notification settings - Fork 132
/
train-v2.py
239 lines (199 loc) · 10.2 KB
/
train-v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import argparse
import time
import torch
from loguru import logger
import os
from torch.utils.data import Dataset, DataLoader
from os.path import join, exists
import transformers
import pickle
import sys
from utils import set_logger, set_random_seed
from sklearn.model_selection import train_test_split
from data_parallel import BalancedDataParallel
from transformers import GPT2LMHeadModel, GPT2Config
import pandas as pd
import torch.nn.utils.rnn as rnn_utils
import numpy as np
from dataset import CPMDataset
from torch.utils.tensorboard import SummaryWriter
def set_args():
parser = argparse.ArgumentParser()
parser.add_argument('--device_ids', default='0', type=str, required=False, help='设置使用哪些显卡')
parser.add_argument('--no_cuda', action='store_true', help='不使用GPU进行训练')
parser.add_argument('--vocab_path', default='vocab/chinese_vocab.model', type=str, required=False,
help='sp模型路径')
parser.add_argument('--model_config', default='config/cpm-small.json', type=str, required=False,
help='需要从头训练一个模型时,模型参数的配置文件')
parser.add_argument('--train_path', default='data/train.pkl', type=str, required=False, help='经过预处理之后的数据存放路径')
parser.add_argument('--max_len', default=200, type=int, required=False, help='训练时,输入数据的最大长度')
parser.add_argument('--ignore_index', default=-100, type=int, required=False, help='对于ignore_index的label token不计算梯度')
parser.add_argument('--epochs', default=40, type=int, required=False, help='训练的最大轮次')
parser.add_argument('--batch_size', default=4, type=int, required=False, help='训练的batch size')
parser.add_argument('--gpu0_bsz', default=6, type=int, required=False, help='0号卡的batch size')
parser.add_argument('--lr', default=1e-5, type=float, required=False, help='学习率')
parser.add_argument('--eps', default=1.0e-09, type=float, required=False, help='AdamW优化器的衰减率')
parser.add_argument('--log_step', default=1, type=int, required=False, help='多少步汇报一次loss')
parser.add_argument("--save_step", type=int, default=1, help="every eval_step to save model")
parser.add_argument('--gradient_accumulation_steps', default=6, type=int, required=False, help='梯度积累的步数')
parser.add_argument('--max_grad_norm', default=1.0, type=float, required=False)
parser.add_argument('--output_path', default='output/train', type=str, required=False,
help='模型输出路径')
parser.add_argument('--pretrained_model', default='', type=str, required=False,
help='预训练的模型的路径')
parser.add_argument('--seed', type=int, default=1234, help='设置随机种子')
parser.add_argument('--num_workers', type=int, default=0, help="dataloader加载数据时使用的线程数量")
parser.add_argument('--warmup_steps', type=int, default=4000, help='warm up步数')
args = parser.parse_args()
return args
def collate_fn(batch):
input_ids = rnn_utils.pad_sequence(batch, batch_first=True, padding_value=5)
labels = rnn_utils.pad_sequence(batch, batch_first=True, padding_value=-100)
return input_ids, labels
def load_dataset(logger, args):
"""
加载训练集
"""
logger.info("loading training dataset")
train_path = args.train_path
with open(train_path, "rb") as f:
train_list = pickle.load(f)
# test
# train_list = train_list[:24]
logger.info('len of train data:{}'.format(len(train_list)))
train_dataset = CPMDataset(train_list, args.max_len)
return train_dataset
def train(model, logger, train_dataset, writer, args):
model.train()
train_dataloader = DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collate_fn,
drop_last=True
)
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.epochs
optimizer = transformers.AdamW(model.parameters(), lr=args.lr, eps=args.eps)
scheduler = transformers.get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
logger.info('start training')
device = args.device
ignore_index = args.ignore_index
step = 0
train_loss = 0
train_acc = 0
log_step = args.log_step
save_step = args.save_step
# ========== start training ========== #
for epoch in range(args.epochs):
logger.info('start {}th epoch training'.format(epoch + 1))
for batch_idx, (input_ids, labels) in enumerate(train_dataloader):
step += 1
input_ids = input_ids.to(device)
labels = labels.to(device)
outputs = model.forward(input_ids, labels=labels)
logits = outputs.logits
loss = outputs.loss
loss = loss.mean() # 多卡损失的均值
# 统计该batch的预测token的正确数与总数
batch_correct_num, batch_total_num = calculate_acc(logits, labels, ignore_index=ignore_index)
batch_acc = batch_correct_num / batch_total_num
train_loss += loss
train_acc += batch_acc
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
# 梯度裁剪
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
# 进行一定step的梯度累计之后,更新参数
if step % args.gradient_accumulation_steps == 0:
# 更新参数
optimizer.step()
# 更新学习率
scheduler.step()
# 清空梯度信息
optimizer.zero_grad()
if step % log_step == 0:
train_loss = train_loss / log_step
train_acc = train_acc / log_step
# 训练集指标
logger.info('Epoch {} step {} train Loss {:.4f}, train ACC {:.4f}'.format(epoch + 1, step, train_loss,
train_acc))
writer.add_scalar('train loss', train_loss, step)
writer.add_scalar('train acc', train_acc, step)
train_loss = 0
train_acc = 0
if step % save_step == 0:
logger.info('Saving model at Epoch {} step {}'.format(epoch + 1, step))
model_path = join(args.output_path, 'epoch_{}-step_{}'.format(epoch + 1, step))
if not os.path.exists(model_path):
os.mkdir(model_path)
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(model_path)
logger.info('training finished')
def calculate_acc(logit, labels, ignore_index=-100):
logit = logit[..., :-1, :].contiguous().view(-1, logit.size(-1))
labels = labels[..., 1:].contiguous().view(-1)
_, logit = logit.max(dim=-1) # 对于每条数据,返回最大的index
# 进行非运算,返回一个tensor,若labels的第i个位置为pad_id,则置为0,否则为1
non_pad_mask = labels.ne(ignore_index)
n_correct = logit.eq(labels).masked_select(non_pad_mask).sum().item()
n_word = non_pad_mask.sum().item()
return n_correct, n_word
def main():
# 初始化参数
args = set_args()
# 设置使用哪些显卡进行训练
os.environ["CUDA_VISIBLE_DEVICES"] = args.device_ids
args.cuda = not args.no_cuda
# if args.batch_size < 2048 and args.warmup_steps <= 4000:
# print('[Warning] The warmup steps may be not enough.\n' \
# '(sz_b, warmup) = (2048, 4000) is the official setting.\n' \
# 'Using smaller batch w/o longer warmup may cause ' \
# 'the warmup stage ends with only little data trained.')
# 创建日志对象
cur_time = time.strftime("%Y%m%d%H%M%S", time.localtime())
logger.add(join(args.output_path, 'train-{}.log'.format(cur_time)))
# 初始化tensorboard
writer = SummaryWriter(args.output_path)
# 当用户使用GPU,并且GPU可用时
args.cuda = torch.cuda.is_available() and not args.no_cuda
device = 'cuda:0' if args.cuda else 'cpu'
args.device = device
logger.info('using device:{}'.format(device))
# 设置随机种子
set_random_seed(args.seed, args.cuda)
# 初始化tokenizer
# tokenizer = CpmTokenizer(vocab_file=args.vocab_path)
# args.eod_id = tokenizer.convert_tokens_to_ids("<eod>") # 文档结束符
# args.pad_id = tokenizer.pad_token_id
# 创建模型的输出目录
if not os.path.exists(args.output_path):
os.mkdir(args.output_path)
# 创建模型
if args.pretrained_model: # 加载预训练模型
logger.info('')
model = GPT2LMHeadModel.from_pretrained(args.pretrained_model)
else: # 初始化模型
model_config = GPT2Config.from_json_file(args.model_config)
model = GPT2LMHeadModel(config=model_config)
model = model.to(device)
logger.info('model config:\n{}'.format(model.config.to_json_string()))
# assert model.config.vocab_size == tokenizer.vocab_size
# 多卡并行训练模型
if args.cuda and torch.cuda.device_count() > 1:
# model = DataParallel(model).cuda()
model = BalancedDataParallel(args.gpu0_bsz, model, dim=0).cuda()
logger.info("use GPU {} to train".format(args.device))
# 计算模型参数数量
num_parameters = 0
parameters = model.parameters()
for parameter in parameters:
num_parameters += parameter.numel()
logger.info("Number of teacher parameter: %.2fM" % (num_parameters / 1e6))
# 记录参数设置
logger.info("args:{}".format(args))
# 加载训练集和验证集
# ========= Loading Dataset ========= #
train_dataset = load_dataset(logger, args)
train(model, logger, train_dataset, writer, args)
if __name__ == '__main__':
main()