We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
应该是测试2000张图片是80%. 4952张图片如下,现场跑的:
model restore from : /home/yanghe/YangHe_MyCode/FPN_Tensorflow-master/output/trained_weights/FPN_Res101_v1/voc_80000model.ckpt 2018-12-11 22:16:40.830512: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:897] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2018-12-11 22:16:40.830848: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1392] Found device 0 with properties: name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.683 pciBusID: 0000:01:00.0 totalMemory: 10.92GiB freeMemory: 10.36GiB 2018-12-11 22:16:40.830859: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1471] Adding visible gpu devices: 0 2018-12-11 22:16:41.007018: I tensorflow/core/common_runtime/gpu/gpu_device.cc:952] Device interconnect StreamExecutor with strength 1 edge matrix: 2018-12-11 22:16:41.007044: I tensorflow/core/common_runtime/gpu/gpu_device.cc:958] 0 2018-12-11 22:16:41.007049: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0: N 2018-12-11 22:16:41.007183: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10017 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1) restore model 003607.jpg image cost 0.10984158515930176s:[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>]100% 4952/4952Writing aeroplane VOC resutls file Writing bicycle VOC resutls file Writing bird VOC resutls file Writing boat VOC resutls file Writing bottle VOC resutls file Writing bus VOC resutls file Writing car VOC resutls file Writing cat VOC resutls file Writing chair VOC resutls file Writing cow VOC resutls file Writing diningtable VOC resutls file Writing dog VOC resutls file Writing horse VOC resutls file Writing motorbike VOC resutls file Writing person VOC resutls file Writing pottedplant VOC resutls file Writing sheep VOC resutls file Writing sofa VOC resutls file Writing train VOC resutls file Writing tvmonitor VOC resutls file cls : aeroplane|| Recall: 0.9368421052631579 || Precison: 0.0006888900356055524|| AP: 0.8316195907441402 ____________________ cls : bicycle|| Recall: 0.9317507418397626 || Precison: 0.0008097061591820421|| AP: 0.8428989611072188 ____________________ cls : bird|| Recall: 0.9564270152505446 || Precison: 0.0011153908695475427|| AP: 0.8564636847169369 ____________________ cls : boat|| Recall: 0.9239543726235742 || Precison: 0.0006345525621038943|| AP: 0.6681021871004866 ____________________ cls : bottle|| Recall: 0.9040511727078892 || Precison: 0.0010303391127905422|| AP: 0.6836585228090871 ____________________ cls : bus|| Recall: 0.971830985915493 || Precison: 0.000545292179140335|| AP: 0.893992976333262 ____________________ cls : car|| Recall: 0.9592006661115737 || Precison: 0.002975037575344376|| AP: 0.8971617581902198 ____________________ cls : cat|| Recall: 0.9776536312849162 || Precison: 0.0008884534056957478|| AP: 0.9199375930964409 ____________________ cls : chair|| Recall: 0.8783068783068783 || Precison: 0.001715261435291504|| AP: 0.6108782073953818 ____________________ cls : cow|| Recall: 0.9754098360655737 || Precison: 0.000614017662037455|| AP: 0.7791710473975842 ____________________ cls : diningtable|| Recall: 0.9320388349514563 || Precison: 0.00048727625264258543|| AP: 0.6986196556015922 ____________________ cls : dog|| Recall: 0.983640081799591 || Precison: 0.001226562081636504|| AP: 0.9059106898861442 ____________________ cls : horse|| Recall: 0.9683908045977011 || Precison: 0.0008725303120137326|| AP: 0.8889594199400792 ____________________ cls : motorbike|| Recall: 0.9384615384615385 || Precison: 0.0007925062685946655|| AP: 0.8489529517343617 ____________________ cls : person|| Recall: 0.9293286219081273 || Precison: 0.010406388256212797|| AP: 0.8462024604502763 ____________________ cls : pottedplant|| Recall: 0.8541666666666666 || Precison: 0.00103803512609595|| AP: 0.5071455263152422 ____________________ cls : sheep|| Recall: 0.9504132231404959 || Precison: 0.0005689267073985208|| AP: 0.8354602699815161 ____________________ cls : sofa|| Recall: 0.9623430962343096 || Precison: 0.0006337869043091998|| AP: 0.786707445700414 ____________________ cls : train|| Recall: 0.9432624113475178 || Precison: 0.000724355500608622|| AP: 0.865695670375713 ____________________ cls : tvmonitor|| Recall: 0.961038961038961 || Precison: 0.0007615832698680609|| AP: 0.7962795325532337 ____________________ mAP is : 0.7981909075714665
我使用2007和2012的训练集和验证集进行训练,使用了预训练模型。
提交结点这里
Originally posted by @yanghedada in #46 (comment)
你好,我嘗試用VOC2007trainval+VOC2012trainval來生成tfrecord訓練的時候,會出現rpn_loc_loss:nan的情況,這是數據集上的問題呢還是通過修改代碼就可以解決了?想請教一下你的!
The text was updated successfully, but these errors were encountered:
@1451595897, 你好,
gtbox_label = np.transpose(np.stack([ymin, xmin, ymax, xmax, label], axis=0)) # [ymin, xmin, ymax, xmax, label]
的[ymin, xmin, ymax, xmax, label]顺序。 2. 是否使用预训练的参数?没有使用预训练参数,可能会出现loss==nan。
Sorry, something went wrong.
你好,我是有用預訓練參數去訓練的.我用的是新的convert_data_to_tfrecord.py轉成tfrecord文件的,你用原來的convert_data_to_tfrecord_raw.py文件去轉就不會出現這個問題對吧?因爲我看了一下,兩個文件這四個坐標的順序的確是不一樣的! @yanghedada @yangxue0827
这个代码是xmin ymin xmax ymax 的顺序 @1451595897
No branches or pull requests
应该是测试2000张图片是80%. 4952张图片如下,现场跑的:
我使用2007和2012的训练集和验证集进行训练,使用了预训练模型。
提交结点这里
Originally posted by @yanghedada in #46 (comment)
你好,我嘗試用VOC2007trainval+VOC2012trainval來生成tfrecord訓練的時候,會出現rpn_loc_loss:nan的情況,這是數據集上的問題呢還是通過修改代碼就可以解決了?想請教一下你的!
The text was updated successfully, but these errors were encountered: