Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

VOC2007trainval+VOC2012trainval用於訓練 #53

Open
1451595897 opened this issue Mar 15, 2019 · 3 comments
Open

VOC2007trainval+VOC2012trainval用於訓練 #53

1451595897 opened this issue Mar 15, 2019 · 3 comments

Comments

@1451595897
Copy link

应该是测试2000张图片是80%. 4952张图片如下,现场跑的:

model restore from : /home/yanghe/YangHe_MyCode/FPN_Tensorflow-master/output/trained_weights/FPN_Res101_v1/voc_80000model.ckpt
2018-12-11 22:16:40.830512: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:897] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2018-12-11 22:16:40.830848: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1392] Found device 0 with properties: 
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.683
pciBusID: 0000:01:00.0
totalMemory: 10.92GiB freeMemory: 10.36GiB
2018-12-11 22:16:40.830859: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1471] Adding visible gpu devices: 0
2018-12-11 22:16:41.007018: I tensorflow/core/common_runtime/gpu/gpu_device.cc:952] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-12-11 22:16:41.007044: I tensorflow/core/common_runtime/gpu/gpu_device.cc:958]      0 
2018-12-11 22:16:41.007049: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0:   N 
2018-12-11 22:16:41.007183: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10017 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
restore model
003607.jpg image cost 0.10984158515930176s:[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>]100%	4952/4952Writing aeroplane VOC resutls file
Writing bicycle VOC resutls file
Writing bird VOC resutls file
Writing boat VOC resutls file
Writing bottle VOC resutls file
Writing bus VOC resutls file
Writing car VOC resutls file
Writing cat VOC resutls file
Writing chair VOC resutls file
Writing cow VOC resutls file
Writing diningtable VOC resutls file
Writing dog VOC resutls file
Writing horse VOC resutls file
Writing motorbike VOC resutls file
Writing person VOC resutls file
Writing pottedplant VOC resutls file
Writing sheep VOC resutls file
Writing sofa VOC resutls file
Writing train VOC resutls file
Writing tvmonitor VOC resutls file
cls : aeroplane|| Recall: 0.9368421052631579 || Precison: 0.0006888900356055524|| AP: 0.8316195907441402
____________________
cls : bicycle|| Recall: 0.9317507418397626 || Precison: 0.0008097061591820421|| AP: 0.8428989611072188
____________________
cls : bird|| Recall: 0.9564270152505446 || Precison: 0.0011153908695475427|| AP: 0.8564636847169369
____________________
cls : boat|| Recall: 0.9239543726235742 || Precison: 0.0006345525621038943|| AP: 0.6681021871004866
____________________
cls : bottle|| Recall: 0.9040511727078892 || Precison: 0.0010303391127905422|| AP: 0.6836585228090871
____________________
cls : bus|| Recall: 0.971830985915493 || Precison: 0.000545292179140335|| AP: 0.893992976333262
____________________
cls : car|| Recall: 0.9592006661115737 || Precison: 0.002975037575344376|| AP: 0.8971617581902198
____________________
cls : cat|| Recall: 0.9776536312849162 || Precison: 0.0008884534056957478|| AP: 0.9199375930964409
____________________
cls : chair|| Recall: 0.8783068783068783 || Precison: 0.001715261435291504|| AP: 0.6108782073953818
____________________
cls : cow|| Recall: 0.9754098360655737 || Precison: 0.000614017662037455|| AP: 0.7791710473975842
____________________
cls : diningtable|| Recall: 0.9320388349514563 || Precison: 0.00048727625264258543|| AP: 0.6986196556015922
____________________
cls : dog|| Recall: 0.983640081799591 || Precison: 0.001226562081636504|| AP: 0.9059106898861442
____________________
cls : horse|| Recall: 0.9683908045977011 || Precison: 0.0008725303120137326|| AP: 0.8889594199400792
____________________
cls : motorbike|| Recall: 0.9384615384615385 || Precison: 0.0007925062685946655|| AP: 0.8489529517343617
____________________
cls : person|| Recall: 0.9293286219081273 || Precison: 0.010406388256212797|| AP: 0.8462024604502763
____________________
cls : pottedplant|| Recall: 0.8541666666666666 || Precison: 0.00103803512609595|| AP: 0.5071455263152422
____________________
cls : sheep|| Recall: 0.9504132231404959 || Precison: 0.0005689267073985208|| AP: 0.8354602699815161
____________________
cls : sofa|| Recall: 0.9623430962343096 || Precison: 0.0006337869043091998|| AP: 0.786707445700414
____________________
cls : train|| Recall: 0.9432624113475178 || Precison: 0.000724355500608622|| AP: 0.865695670375713
____________________
cls : tvmonitor|| Recall: 0.961038961038961 || Precison: 0.0007615832698680609|| AP: 0.7962795325532337
____________________
mAP is : 0.7981909075714665

我使用2007和2012的训练集和验证集进行训练,使用了预训练模型。

提交结点这里

Originally posted by @yanghedada in #46 (comment)

你好,我嘗試用VOC2007trainval+VOC2012trainval來生成tfrecord訓練的時候,會出現rpn_loc_loss:nan的情況,這是數據集上的問題呢還是通過修改代碼就可以解決了?想請教一下你的!

@yanghedada
Copy link

@1451595897, 你好,

  1. 你可以查看FPN_TensorFlow-master_old\data\io\convert_data_to_tfrecord.py 的# line 74
gtbox_label = np.transpose(np.stack([ymin, xmin, ymax, xmax, label], axis=0))  # [ymin, xmin, ymax, xmax, label]

的[ymin, xmin, ymax, xmax, label]顺序。
2. 是否使用预训练的参数?没有使用预训练参数,可能会出现loss==nan。

@1451595897
Copy link
Author

你好,我是有用預訓練參數去訓練的.我用的是新的convert_data_to_tfrecord.py轉成tfrecord文件的,你用原來的convert_data_to_tfrecord_raw.py文件去轉就不會出現這個問題對吧?因爲我看了一下,兩個文件這四個坐標的順序的確是不一樣的! @yanghedada @yangxue0827

@yangxue0827
Copy link
Owner

这个代码是xmin ymin xmax ymax 的顺序 @1451595897

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants