-
Notifications
You must be signed in to change notification settings - Fork 48
/
eval_utils_mem.py
261 lines (223 loc) · 11.3 KB
/
eval_utils_mem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import numpy as np
import json
from json import encoder
import random
import string
import time
import os
import sys
import misc.utils as utils
def language_eval(dataset, preds, model_id, split):
import sys
sys.path.append("coco-caption")
annFile = 'coco-caption/annotations/captions_val2014.json'
from pycocotools.coco import COCO
from pycocoevalcap.eval import COCOEvalCap
# encoder.FLOAT_REPR = lambda o: format(o, '.3f')
if not os.path.isdir('eval_results'):
os.mkdir('eval_results')
cache_path = os.path.join('eval_results/', model_id + '_' + split + '.json')
coco = COCO(annFile)
valids = coco.getImgIds()
# filter results to only those in MSCOCO validation set (will be about a third)
preds_filt = [p for p in preds if p['image_id'] in valids]
print('using %d/%d predictions' % (len(preds_filt), len(preds)))
json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...
cocoRes = coco.loadRes(cache_path)
cocoEval = COCOEvalCap(coco, cocoRes)
cocoEval.params['image_id'] = cocoRes.getImgIds()
cocoEval.evaluate()
# create output dictionary
out = {}
for metric, score in cocoEval.eval.items():
out[metric] = score
imgToEval = cocoEval.imgToEval
for p in preds_filt:
image_id, caption = p['image_id'], p['caption']
imgToEval[image_id]['caption'] = caption
with open(cache_path, 'w') as outfile:
json.dump({'overall': out, 'imgToEval': imgToEval}, outfile)
return out, imgToEval
def eval_split(model, crit, loader, training_mode=0, eval_kwargs={}):
verbose = eval_kwargs.get('verbose', True)
verbose_beam = eval_kwargs.get('verbose_beam', 1)
verbose_loss = eval_kwargs.get('verbose_loss', 1)
num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1))
split = eval_kwargs.get('split', 'val')
lang_eval = eval_kwargs.get('language_eval', 0)
dataset = eval_kwargs.get('dataset', 'coco')
beam_size = eval_kwargs.get('beam_size', 1)
use_rela = eval_kwargs.get('use_rela', 0)
index_eval = eval_kwargs.get('index_eval', 1)
# Make sure in the evaluation mode
model.eval()
loader.reset_iterator(split)
n = 0
loss = 0
loss_sum = 0
loss_evals = 1e-8
predictions = []
while True:
data = loader.get_batch(split)
n = n + loader.batch_size
if data.get('labels', None) is not None and verbose_loss:
fc_feats = None
att_feats = None
att_masks = None
ssg_data = None
rela_data = None
tmp = [data['fc_feats'], data['labels'], data['masks']]
tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp]
fc_feats, labels, masks = tmp
tmp = [data['att_feats'], data['att_masks'], data['rela_rela_matrix'],
data['rela_rela_masks'], data['rela_attr_matrix'], data['rela_attr_masks']]
tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp]
att_feats, att_masks, rela_rela_matrix, rela_rela_masks, \
rela_attr_matrix, rela_attr_masks = tmp
rela_data = {}
rela_data['att_feats'] = att_feats
rela_data['att_masks'] = att_masks
rela_data['rela_matrix'] = rela_rela_matrix
rela_data['rela_masks'] = rela_rela_masks
rela_data['attr_matrix'] = rela_attr_matrix
rela_data['attr_masks'] = rela_attr_masks
tmp = [data['ssg_rela_matrix'], data['ssg_rela_masks'], data['ssg_obj'], data['ssg_obj_masks'],
data['ssg_attr'], data['ssg_attr_masks']]
tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp]
ssg_rela_matrix, ssg_rela_masks, ssg_obj, ssg_obj_masks, ssg_attr, ssg_attr_masks = tmp
ssg_data = {}
ssg_data['ssg_rela_matrix'] = ssg_rela_matrix
ssg_data['ssg_rela_masks'] = ssg_rela_masks
ssg_data['ssg_obj'] = ssg_obj
ssg_data['ssg_obj_masks'] = ssg_obj_masks
ssg_data['ssg_attr'] = ssg_attr
ssg_data['ssg_attr_masks'] = ssg_attr_masks
loss = 0
with torch.no_grad():
loss = crit(model(fc_feats, att_feats, labels, att_masks,
rela_data, ssg_data,use_rela, training_mode), labels[:, 1:],masks[:, 1:]).item()
loss_sum = loss_sum + loss
loss_evals = loss_evals + 1
# forward the model to also get generated samples for each image
# Only leave one feature for each image, in case duplicate sample
fc_feats = None
att_feats = None
att_masks = None
ssg_data = None
rela_data = None
if use_rela:
tmp = [data['fc_feats'][np.arange(loader.batch_size) * loader.seq_per_img],
data['att_feats'][np.arange(loader.batch_size) * loader.seq_per_img],
data['att_masks'][np.arange(loader.batch_size) * loader.seq_per_img],
data['rela_rela_matrix'][np.arange(loader.batch_size) * loader.seq_per_img],
data['rela_rela_masks'][np.arange(loader.batch_size) * loader.seq_per_img],
data['rela_attr_matrix'][np.arange(loader.batch_size) * loader.seq_per_img],
data['rela_attr_masks'][np.arange(loader.batch_size) * loader.seq_per_img],
data['ssg_rela_matrix'][np.arange(loader.batch_size) * loader.seq_per_img],
data['ssg_rela_masks'][np.arange(loader.batch_size) * loader.seq_per_img],
data['ssg_obj'][np.arange(loader.batch_size) * loader.seq_per_img],
data['ssg_obj_masks'][np.arange(loader.batch_size) * loader.seq_per_img],
data['ssg_attr'][np.arange(loader.batch_size) * loader.seq_per_img],
data['ssg_attr_masks'][np.arange(loader.batch_size) * loader.seq_per_img],
]
tmp = [torch.from_numpy(_).cuda() for _ in tmp]
fc_feats, att_feats, att_masks, rela_rela_matrix, rela_rela_masks, rela_attr_matrix, rela_attr_masks, \
ssg_rela_matrix, ssg_rela_masks, ssg_obj, ssg_obj_masks, ssg_attr, ssg_attr_masks = tmp
else:
tmp = [data['fc_feats'][np.arange(loader.batch_size) * loader.seq_per_img],
data['att_feats'][np.arange(loader.batch_size) * loader.seq_per_img],
data['att_masks'][np.arange(loader.batch_size) * loader.seq_per_img],
data['ssg_rela_matrix'][np.arange(loader.batch_size) * loader.seq_per_img],
data['ssg_rela_masks'][np.arange(loader.batch_size) * loader.seq_per_img],
data['ssg_obj'][np.arange(loader.batch_size) * loader.seq_per_img],
data['ssg_obj_masks'][np.arange(loader.batch_size) * loader.seq_per_img],
data['ssg_attr'][np.arange(loader.batch_size) * loader.seq_per_img],
data['ssg_attr_masks'][np.arange(loader.batch_size) * loader.seq_per_img],
]
tmp = [torch.from_numpy(_).cuda() for _ in tmp]
fc_feats, att_feats, att_masks, ssg_rela_matrix, ssg_rela_masks, \
ssg_obj, ssg_obj_masks, ssg_attr, ssg_attr_masks = tmp
rela_rela_matrix = None
rela_rela_masks = None
rela_attr_matrix = None
rela_attr_masks = None
rela_data = {}
rela_data['att_feats'] = att_feats
rela_data['att_masks'] = att_masks
rela_data['rela_matrix'] = rela_rela_matrix
rela_data['rela_masks'] = rela_rela_masks
rela_data['attr_matrix'] = rela_attr_matrix
rela_data['attr_masks'] = rela_attr_masks
ssg_data = {}
ssg_data['ssg_rela_matrix'] = ssg_rela_matrix
ssg_data['ssg_rela_masks'] = ssg_rela_masks
ssg_data['ssg_obj'] = ssg_obj
ssg_data['ssg_obj_masks'] = ssg_obj_masks
ssg_data['ssg_attr'] = ssg_attr
ssg_data['ssg_attr_masks'] = ssg_attr_masks
# forward the model to also get generated samples for each image
with torch.no_grad():
seq = model(fc_feats, att_feats, att_masks, rela_data,
ssg_data,use_rela, training_mode, opt=eval_kwargs, mode='sample')[0].data
# Print beam search
# sents_save_temp = []
# if beam_size > 1 and verbose_beam:
# for i in range(loader.batch_size):
# sents_temp = []
# sents_length = []
# for seq_temp in model.done_beams[i]:
# sent_temp = utils.decode_sequence(loader.get_vocab(), seq_temp['seq'].unsqueeze(0),
# use_ssg=1)[0]
# sents_temp.append(sent_temp)
# sents_length.append(len(sent_temp))
# print('{0}'.format(sent_temp))
# print('--' * 10)
# sents_index = sents_length.index(max(sents_length))
# sents_save_temp.append(sents_temp[sents_index])
sents = utils.decode_sequence(loader.get_vocab(), seq, use_ssg=1)
#sents = sents_save_temp
for k, sent in enumerate(sents):
entry = {'image_id': data['infos'][k]['id'], 'caption': sent}
if eval_kwargs.get('dump_path', 0) == 1:
entry['file_name'] = data['infos'][k]['file_path']
if eval_kwargs.get('dump_images', 0) == 1:
# dump the raw image to vis/ folder
cmd = 'cp "' + os.path.join(eval_kwargs['image_root'],
data['infos'][k]['file_path']) + '" vis/imgs/img' + str(
len(predictions)) + '.jpg' # bit gross
print(cmd)
os.system(cmd)
predictions.append(entry)
# if we wrapped around the split or used up val imgs budget then bail
ix0 = data['bounds']['it_pos_now']
ix1 = data['bounds']['it_max']
if num_images != -1:
ix1 = min(ix1, num_images)
for i in range(n - ix1):
predictions.pop()
if verbose:
print('evaluating validation preformance... %d/%d (%f)' %(ix0 - 1, ix1, loss))
if data['bounds']['wrapped']:
break
if num_images >= 0 and n >= num_images:
break
lang_stats = None
if lang_eval == 1:
lang_stats, scores_each = language_eval(dataset, predictions, eval_kwargs['id'], split)
if verbose:
for img_id in scores_each.keys():
print('image %s, %s' % (scores_each[img_id]['image_id'], scores_each[img_id]['caption']))
print('cider {0:2f}'.format(scores_each[img_id]['CIDEr']))
text_file = open('gen_cap/cap'+ eval_kwargs['model'][-10:-4] + '.txt', "aw")
text_file.write('image %s, %s' % (scores_each[img_id]['image_id'], scores_each[img_id]['caption']))
text_file.write('\n cider {0:2f}'.format(scores_each[img_id]['CIDEr']))
text_file.write('\n')
text_file.close()
# Switch back to training mode
model.train()
return loss_sum/loss_evals, predictions, lang_stats