-
Notifications
You must be signed in to change notification settings - Fork 7
/
extract_gqa_image.py
177 lines (147 loc) · 6.37 KB
/
extract_gqa_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# !/usr/bin/env python
# The root of bottom-up-attention repo. Do not need to change if using provided docker file.
BUTD_ROOT = '/opt/butd/'
import os, sys
sys.path.insert(0, BUTD_ROOT + "/tools")
os.environ['GLOG_minloglevel'] = '2'
import _init_paths
from fast_rcnn.config import cfg, cfg_from_file, cfg_from_list
from fast_rcnn.test import im_detect, _get_blobs
from fast_rcnn.nms_wrapper import nms
import caffe
import argparse
import pprint
import base64
import numpy as np
import cv2
import csv
from tqdm import tqdm
csv.field_size_limit(sys.maxsize)
FIELDNAMES = ["img_id", "img_h", "img_w", "objects_id", "objects_conf",
"attrs_id", "attrs_conf", "num_boxes", "boxes", "features"]
# Settings for the number of features per image. To re-create pretrained features with 36 features
# per image, set both values to 36.
MIN_BOXES = 100
MAX_BOXES = 100
def load_image_ids(img_root):
pathXid = []
for name in os.listdir(img_root):
idx = name.split(".")[0]
pathXid.append(
(
os.path.join(img_root, name),
idx))
return pathXid
def generate_tsv(prototxt, weights, image_ids, outfile):
# First check if file exists, and if it is complete
# never use set, it loses the order!!! F***
wanted_ids = set([image_id[1] for image_id in image_ids])
found_ids = set()
if os.path.exists(outfile):
with open(outfile, "r") as tsvfile:
reader = csv.DictReader(tsvfile, delimiter='\t', fieldnames=FIELDNAMES)
for item in reader:
found_ids.add(item['img_id'])
missing = wanted_ids - found_ids
if len(missing) == 0:
print('already completed {:d}'.format(len(image_ids)))
else:
print('missing {:d}/{:d}'.format(len(missing), len(image_ids)))
if len(missing) > 0:
caffe.set_mode_gpu()
caffe.set_device(0)
net = caffe.Net(prototxt, caffe.TEST, weights=weights)
with open(outfile, 'ab') as tsvfile:
writer = csv.DictWriter(tsvfile, delimiter='\t', fieldnames=FIELDNAMES)
for im_file, image_id in tqdm(image_ids):
if image_id in missing:
try:
writer.writerow(get_detections_from_im(net, im_file, image_id))
except Exception as e:
print(e)
def get_detections_from_im(net, im_file, image_id, conf_thresh=0.2):
"""
:param net:
:param im_file: full path to an image
:param image_id:
:param conf_thresh:
:return: all information from detection and attr prediction
"""
im = cv2.imread(im_file)
scores, boxes, attr_scores, rel_scores = im_detect(net, im)
# Keep the original boxes, don't worry about the regresssion bbox outputs
rois = net.blobs['rois'].data.copy()
# unscale back to raw image space
blobs, im_scales = _get_blobs(im, None)
cls_boxes = rois[:, 1:5] / im_scales[0]
cls_prob = net.blobs['cls_prob'].data
attr_prob = net.blobs['attr_prob'].data
pool5 = net.blobs['pool5_flat'].data
# Keep only the best detections
max_conf = np.zeros((rois.shape[0]))
for cls_ind in range(1, cls_prob.shape[1]):
cls_scores = scores[:, cls_ind]
dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32)
keep = np.array(nms(dets, cfg.TEST.NMS))
max_conf[keep] = np.where(cls_scores[keep] > max_conf[keep], cls_scores[keep], max_conf[keep])
keep_boxes = np.where(max_conf >= conf_thresh)[0]
if len(keep_boxes) < MIN_BOXES:
keep_boxes = np.argsort(max_conf)[::-1][:MIN_BOXES]
elif len(keep_boxes) > MAX_BOXES:
keep_boxes = np.argsort(max_conf)[::-1][:MAX_BOXES]
objects = np.argmax(cls_prob[keep_boxes][:, 1:], axis=1)
objects_conf = np.max(cls_prob[keep_boxes][:, 1:], axis=1)
attrs = np.argmax(attr_prob[keep_boxes][:, 1:], axis=1)
attrs_conf = np.max(attr_prob[keep_boxes][:, 1:], axis=1)
return {
"img_id": image_id,
"img_h": np.size(im, 0),
"img_w": np.size(im, 1),
"objects_id": base64.b64encode(objects), # int64
"objects_conf": base64.b64encode(objects_conf), # float32
"attrs_id": base64.b64encode(attrs), # int64
"attrs_conf": base64.b64encode(attrs_conf), # float32
"num_boxes": len(keep_boxes),
"boxes": base64.b64encode(cls_boxes[keep_boxes]), # float32
"features": base64.b64encode(pool5[keep_boxes]) # float32
}
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Generate bbox output from a Fast R-CNN network')
parser.add_argument('--gpu', dest='gpu_id', help='GPU id(s) to use',
default='0', type=str)
parser.add_argument('--def', dest='prototxt',
help='prototxt file defining the network',
default=None, type=str)
parser.add_argument('--out', dest='outfile',
help='output filepath',
default=None, type=str)
parser.add_argument('--cfg', dest='cfg_file',
help='optional config file', default=None, type=str)
parser.add_argument('--set', dest='set_cfgs',
help='set config keys', default=None,
nargs=argparse.REMAINDER)
parser.add_argument('--imgroot', type=str, default='/workspace/images/')
parser.add_argument('--split', type=str, default='valid')
parser.add_argument('--caffemodel', type=str, default='pretrained/resnet101_faster_rcnn_final_iter_320000.caffemodel')
args = parser.parse_args()
return args
if __name__ == '__main__':
# Setup the configuration, normally do not need to touch these:
args = parse_args()
args.cfg_file = BUTD_ROOT + "experiments/cfgs/faster_rcnn_end2end_resnet.yml" # s = 500
args.prototxt = BUTD_ROOT + "models/vg/ResNet-101/faster_rcnn_end2end_final/test.prototxt"
args.outfile = "%s_obj100.tsv" % "vg_gqa"
print('Called with args:')
print(args)
if args.cfg_file is not None:
cfg_from_file(args.cfg_file)
print('Using config:')
pprint.pprint(cfg)
assert cfg.TEST.HAS_RPN
# Load image ids, need modification for new datasets.
image_ids = load_image_ids(args.imgroot)
# Generate TSV files, noramlly do not need to modify
generate_tsv(args.prototxt, args.caffemodel, image_ids, args.outfile)