-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_CK+_confusion_matrix.py
132 lines (106 loc) · 4.11 KB
/
plot_CK+_confusion_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""
plot confusion_matrix of fold Test set of CK+
"""
import transforms as transforms
import argparse
import itertools
import os
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import confusion_matrix
from CK import CK
#from models import *
from ShuffleNetV2 import ShuffleNetV2
import torch
from torch.autograd import Variable
import torchvision
test_data = './test_img/eval_fer'
parser = argparse.ArgumentParser(description='PyTorch CK+ CNN Training')
parser.add_argument('--dataset', type=str, default='CK+', help='emotion dataset')
parser.add_argument('--model', type=str, default='ShuffleNetV2', help='CNN architecture')
opt = parser.parse_args()
cut_size = 44
transform_test=transforms.Compose([
transforms.Resize(48),
transforms.TenCrop(cut_size),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
])
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title, fontsize=16)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label', fontsize=18)
plt.xlabel('Predicted label', fontsize=18)
plt.tight_layout()
class_names = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Contempt']
# Model
ShuffleNetV2 = ShuffleNetV2()
checkpoint = torch.load('weights/ShuffleNetV2.pth')
ShuffleNetV2.load_state_dict(checkpoint['net'])
#ShuffleNetV2.eval()
#net = ShuffleNetV2()
correct = 0
total = 0
all_target = []
for i in range(10):
#print("%d fold" % (i+1))
path = os.path.join(opt.dataset + '_' + opt.model, '%d' %(i+1))
ShuffleNetV2.cuda()
ShuffleNetV2.eval()
#testset = CK(split = 'Testing', fold = i+1, transform=transform_test)
testset=torchvision.datasets.ImageFolder(test_data,transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=5,
shuffle=False, num_workers=1)
for batch_idx, (inputs, targets) in enumerate(testloader):
bs, ncrops, c, h, w = np.shape(inputs)
inputs = inputs.view(-1, c, h, w)
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs), Variable(targets)
outputs = ShuffleNetV2(inputs)
#print('outputS:',outputs)
outputs_avg = outputs.view(bs, ncrops, -1).mean(1) # avg over crops
_, predicted = torch.max(outputs_avg.data, 1)
#print('output:',outputs_avg.data)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
if batch_idx == 0 and i == 0:
all_predicted = predicted
all_targets = targets
else:
all_predicted = torch.cat((all_predicted, predicted), 0)
all_targets = torch.cat((all_targets, targets), 0)
print('correct nums:',correct)
acc = 100. * correct / total
print("accuracy: %0.4f" % acc)
# Compute confusion matrix
matrix = confusion_matrix(all_targets.data.cpu().numpy(), all_predicted.cpu().numpy())
np.set_printoptions(precision=2)
# Plot normalized confusion matrix
plt.figure(figsize=(10, 8))
plot_confusion_matrix(matrix, classes=class_names, normalize=False,
title= 'Confusion Matrix (Accuracy: %0.4f%%)' %acc)
plt.show()
plt.savefig( 'Confusion Matrix.png')
plt.close()