-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_shuffle_wo_smiles.py
404 lines (355 loc) · 15.9 KB
/
main_shuffle_wo_smiles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import argparse
import random
import numpy as np
import torch
from torch.autograd import Variable
from tqdm import tqdm
from model.contrastive_gin_wo_smiles import GINSimclr
from data_provider.match_dataset import GINMatchShuffleDataset
from data_provider.sent_dataset import GINSentShuffleDataset
import torch_geometric
from optimization import BertAdam, warmup_linear
from torch.utils.data import RandomSampler
import os
import re
from torch.utils.data import DataLoader
import statistics
import logging
def prepare_model_and_optimizer(args, device):
model = GINSimclr.load_from_checkpoint(args.init_checkpoint)
if args.mode == 'linear':
for p in model.graph_encoder.parameters():
p.requires_grad = False
for p in model.text_encoder.parameters():
p.requires_grad = False
model.to(device)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{
'params': [
p for n, p in param_optimizer
if not any(nd in n for nd in no_decay)
],
'weight_decay': 0.01
},
{
'params': [
p for n, p in param_optimizer if any(nd in n for nd in no_decay)
],
'weight_decay': 0.0
},
]
optimizer = BertAdam(
optimizer_grouped_parameters,
weight_decay=args.weight_decay,
lr=args.lr,
warmup=args.warmup,
t_total=args.total_steps,
)
return model,optimizer
def Eval(model, dataloader, device, args):
model.eval()
with torch.no_grad():
acc1 = 0
acc2 = 0
allcnt = 0
graph_rep_total = None
text_rep_total = None
for batch in (dataloader):
aug, text, mask = batch
aug = aug.to(device)
text = text.to(device)
mask = mask.to(device)
graph_rep = model.graph_encoder(aug)
graph_rep = model.graph_proj_head(graph_rep)
text_rep = model.text_encoder(text, mask)
text_rep = model.text_proj_head(text_rep)
scores1 = torch.cosine_similarity(graph_rep.unsqueeze(1).expand(graph_rep.shape[0], graph_rep.shape[0], graph_rep.shape[1]), text_rep.unsqueeze(0).expand(text_rep.shape[0], text_rep.shape[0], text_rep.shape[1]), dim=-1)
scores2 = torch.cosine_similarity(text_rep.unsqueeze(1).expand(text_rep.shape[0], text_rep.shape[0], text_rep.shape[1]), graph_rep.unsqueeze(0).expand(graph_rep.shape[0], graph_rep.shape[0], graph_rep.shape[1]), dim=-1)
argm1 = torch.argmax(scores1, axis=1)
argm2 = torch.argmax(scores2, axis=1)
acc1 += sum((argm1==torch.arange(argm1.shape[0]).to(device)).int()).item()
acc2 += sum((argm2==torch.arange(argm2.shape[0]).to(device)).int()).item()
allcnt += argm1.shape[0]
if graph_rep_total is None or text_rep_total is None:
graph_rep_total = graph_rep
text_rep_total = text_rep
else:
graph_rep_total = torch.cat((graph_rep_total, graph_rep), axis=0)
text_rep_total = torch.cat((text_rep_total, text_rep), axis=0)
np.save(f'{args.output_path}/graph_rep.npy', graph_rep_total.cpu())
np.save(f'{args.output_path}/text_rep.npy', text_rep_total.cpu())
return acc1/allcnt, acc2/allcnt
# get every sentence's rep
def CalSent(model, dataloader, device, args):
model.eval()
with torch.no_grad():
text_rep_total = None
for batch in (dataloader):
text, mask = batch
text = text.to(device)
mask = mask.to(device)
text_rep = model.text_encoder(text, mask)
text_rep = model.text_proj_head(text_rep)
if text_rep_total is None:
text_rep_total = text_rep
else:
text_rep_total = torch.cat((text_rep_total, text_rep), axis=0)
np.save(f'{args.output_path}/text_rep.npy', text_rep_total.cpu())
def Contra_Loss(logits_des, logits_smi, margin, device):
scores = torch.cosine_similarity(logits_smi.unsqueeze(1).expand(logits_smi.shape[0], logits_smi.shape[0], logits_smi.shape[1]), logits_des.unsqueeze(0).expand(logits_des.shape[0], logits_des.shape[0], logits_des.shape[1]), dim=-1)
diagonal = scores.diag().view(logits_smi.size(0), 1)
d1 = diagonal.expand_as(scores)
d2 = diagonal.t().expand_as(scores)
cost_des = (margin + scores - d1).clamp(min=0)
cost_smi = (margin + scores - d2).clamp(min=0)
# clear diagonals
mask = torch.eye(scores.size(0)) > .5
I = Variable(mask)
if torch.cuda.is_available():
I = I.to(device)
cost_des = cost_des.masked_fill_(I, 0)
cost_smi = cost_smi.masked_fill_(I, 0)
# keep the maximum violating negative for each query
#if self.max_violation:
cost_des = cost_des.max(1)[0]
cost_smi = cost_smi.max(0)[0]
return cost_des.sum() + cost_smi.sum()
def main(args):
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device(f'cuda:{args.device}')
model, optimizer = prepare_model_and_optimizer(args, device)
ids = []
text_name_list = os.listdir("data/kv_data/text")
for text_name in text_name_list:
text_id = re.split('[_.]',text_name)[1]
text_id = int(text_id)
ids.append(text_id)
ids.sort()
seq = np.arange(len(ids))
np.random.shuffle(seq)
scaf = []
k = int(len(seq)/10)
scaf.append(seq[:7*k])
scaf.append(seq[7*k:8*k])
scaf.append(seq[8*k:])
# sys.exit(0)
TrainSet = GINMatchShuffleDataset(args,ids, scaf[0])
DevSet = GINMatchShuffleDataset(args, ids, scaf[1])
TestSet = GINMatchShuffleDataset(args, ids, scaf[2])
train_sampler = RandomSampler(TrainSet)
train_dataloader = torch_geometric.loader.DataLoader(TrainSet, sampler=train_sampler,
batch_size=args.batch_size,
num_workers=4, pin_memory=True, drop_last=True)
dev_dataloader = torch_geometric.loader.DataLoader(DevSet, shuffle=False,
batch_size=args.batch_size,
num_workers=4, pin_memory=True, drop_last=True)
test_dataloader = torch_geometric.loader.DataLoader(TestSet, shuffle=False,
batch_size=args.batch_size,
num_workers=4, pin_memory=True, drop_last=False)#True
global_step = 0
tag = True
best_acc = 0
if args.mode != 'zeroshot': # finetune
for epoch in range(args.epoch):
if tag==False:
break
acc1, acc2 = Eval(model, dev_dataloader, device, args)
print('Epoch:', epoch, ', DevAcc1:', acc1)
print('Epoch:', epoch, ', DevAcc2:', acc2)
if acc1>best_acc:
best_acc = acc1
torch.save(model.state_dict(), f'{args.output_path}/model.ckpt')
print('Save checkpoint ', global_step)
acc = 0
allcnt = 0
sumloss = 0
model.train()
for idx,batch in enumerate((train_dataloader)):
aug, text, mask = batch
aug.to(device)
text = text.to(device)
mask = mask.to(device)
graph_rep = model.graph_encoder(aug)
graph_rep = model.graph_proj_head(graph_rep)
text_rep = model.text_encoder(text, mask)
text_rep = model.text_proj_head(text_rep)
loss = Contra_Loss(graph_rep, text_rep, args.margin, device)
scores = text_rep.mm(graph_rep.t())
argm = torch.argmax(scores, axis=1)
acc += sum((argm==torch.arange(argm.shape[0]).to(device)).int()).item()
allcnt += argm.shape[0]
sumloss += loss.item()
loss.backward()
#if idx%4==1:
optimizer.step()
optimizer.zero_grad()
global_step += 1
if global_step>args.total_steps:
tag = False
break
optimizer.step()
optimizer.zero_grad()
print('Epoch:', epoch, ', Acc:', acc/allcnt, ', Loss:', sumloss/allcnt)
acc1, acc2 = Eval(model, dev_dataloader, device, args)
print('Epoch:', args.epoch, ', DevAcc1:', acc1)
print('Epoch:', args.epoch, ', DevAcc2:', acc2)
if acc1>best_acc:
best_acc = acc1
torch.save(model.state_dict(), f'{args.output_path}/model.ckpt')
print('Save checkpoint ', global_step)
model.load_state_dict(torch.load(f'{args.output_path}/model.ckpt'))
if args.data_type == 'para': # para-level
acc1, acc2 = Eval(model, test_dataloader, device, args)
print('Test Acc1:', round(acc1, 4))
print('Test Acc2:', round(acc2, 4))
graph_rep = torch.from_numpy(np.load(f'{args.output_path}/graph_rep.npy'))
text_rep = torch.from_numpy(np.load(f'{args.output_path}/text_rep.npy'))
graph_len = graph_rep.shape[0]
text_len = text_rep.shape[0]
score1 = torch.zeros(graph_len, graph_len)
for i in range(graph_len):
score1[i] = torch.cosine_similarity(graph_rep[i], text_rep, dim=-1)
rec1 = []
for i in range(graph_len):
a,idx = torch.sort(score1[:,i])
for j in range(graph_len):
if idx[-1-j]==i:
rec1.append(j)
break
rec_1 = sum( (np.array(rec1)<20).astype(int) ) / graph_len
print(f'Rec@20 1: {round(rec_1, 4)}')
rec1 = sum( (np.array(rec1)<20).astype(int) ) / graph_len
score2 = torch.zeros(graph_len, graph_len)
for i in range(graph_len):
score2[i] = torch.cosine_similarity(text_rep[i], graph_rep, dim=-1)
rec2 = []
for i in range(graph_len):
a,idx = torch.sort(score2[:,i])
for j in range(graph_len):
if idx[-1-j]==i:
rec2.append(j)
break
rec_2 = sum( (np.array(rec2)<20).astype(int) ) / graph_len
print(f'Rec@20 2: {round(rec_2, 4)}')
rec2 = sum( (np.array(rec2)<20).astype(int) ) / graph_len
return acc1, acc2, rec1, rec2
else: #sent-level
acc1, acc2 = Eval(model, test_dataloader, device, args)
print(f"seed: {args.seed}")
print('Test Acc1:', acc1)
print('Test Acc2:', acc2)
graph_rep = torch.from_numpy(np.load(f'{args.output_path}/graph_rep.npy'))
SentSet = GINSentShuffleDataset(args, ids, scaf[2])
sent_dataloader = DataLoader(SentSet, shuffle=False,
batch_size=args.batch_size,
num_workers=4, pin_memory=True, drop_last=False)#True
CalSent(model, sent_dataloader, device, args)
graph_rep = torch.from_numpy(np.load(f'{args.output_path}/graph_rep.npy'))
text_rep = torch.from_numpy(np.load(f'{args.output_path}/text_rep.npy'))
cor = np.load(f'{args.output_path}/cor.npy')
graph_len = graph_rep.shape[0]
text_len = text_rep.shape[0]
score1 = torch.zeros(graph_len, graph_len)
score2 = torch.zeros(graph_len, graph_len)
for i in range(graph_len):
score = torch.cosine_similarity(graph_rep[i], text_rep, dim=-1)
for j in range(graph_len):
total = 0
for k in range(cor[j], cor[j+1]):
total+=(score[k]/(cor[j+1]-cor[j]))
score1[i,j] = total
#score1[i,j] = sum(score[cor[j]:cor[j+1]])/(cor[j+1]-cor[j])
rec1 = []
for i in range(graph_len):
a,idx = torch.sort(score1[:,i])
for j in range(graph_len):
if idx[-1-j]==i:
rec1.append(j)
break
print(f'Rec@20 1: {sum( (np.array(rec1)<20).astype(int) ) / graph_len}')
rec1 = sum( (np.array(rec1)<20).astype(int) ) / graph_len
score_tmp = torch.zeros(text_len, graph_len)
for i in range(text_len):
score_tmp[i] = torch.cosine_similarity(text_rep[i], graph_rep, dim=-1)
score_tmp = torch.t(score_tmp)
for i in range(graph_len):
for j in range(graph_len):
total = 0
for k in range(cor[j], cor[j+1]):
total+=(score_tmp[i][k]/(cor[j+1]-cor[j]))
score2[i,j] = total
#score2[i,j] = sum(score_tmp[i][cor[j]:cor[j+1]])/(cor[j+1]-cor[j])
score2 = torch.t(score2)
rec2 = []
for i in range(graph_len):
a,idx = torch.sort(score2[:,i])
for j in range(graph_len):
if idx[-1-j]==i:
rec2.append(j)
break
print(f'Rec@20 2: {sum( (np.array(rec2)<20).astype(int) ) / graph_len}')
rec2 = sum( (np.array(rec2)<20).astype(int) ) / graph_len
return acc1, acc2, rec1, rec2
def parse_args(parser=argparse.ArgumentParser()):
parser.add_argument("--device", default="0", type=str,)
parser.add_argument("--init_checkpoint", required=True, type=str,)
parser.add_argument("--output_path", default='temp_path', type=str,)
parser.add_argument('--data_type', choices=['sent', 'para'], required=True, help='Select data type: sent or para')
parser.add_argument('--mode', choices=['zeroshot', 'finetune', 'linear'], required=True, help='Select mode: zeroshot, finetune, or linear')
parser.add_argument("--weight_decay", default=0, type=float,)
parser.add_argument("--lr", default=5e-5, type=float,)#4
parser.add_argument("--warmup", default=0.2, type=float,)
parser.add_argument("--total_steps", default=5000, type=int,)#3000
parser.add_argument("--batch_size", default=64, type=int,)
parser.add_argument("--epoch", default=30, type=int,)
parser.add_argument("--seed", default=73, type=int,)#73 99 108
parser.add_argument("--graph_aug", default='noaug', type=str,)
parser.add_argument("--text_max_len", default=128, type=int,)
parser.add_argument("--margin", default=0.2, type=int,)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
if not os.path.exists(args.output_path):
os.mkdir(args.output_path)
acc1_values = []
acc2_values = []
rec1_values = []
rec2_values = []
for seed in [73, 99, 108]:
args.seed = seed
print(f'seed:{args.seed}')
acc1, acc2, rec1, rec2 = main(args)
acc1_values.append(acc1)
acc2_values.append(acc2)
rec1_values.append(rec1)
rec2_values.append(rec2)
acc1_mean = statistics.mean(acc1_values)
acc1_stddev = statistics.stdev(acc1_values)
acc2_mean = statistics.mean(acc2_values)
acc2_stddev = statistics.stdev(acc2_values)
rec1_mean = statistics.mean(rec1_values)
rec1_stddev = statistics.stdev(rec1_values)
rec2_mean = statistics.mean(rec2_values)
rec2_stddev = statistics.stdev(rec2_values)
# import pdb;pdb.set_trace()
logging.basicConfig(filename=f'./logs/mode_{args.mode}_data_type_{args.data_type}_logs.txt', level=logging.INFO, filemode='a',
format='%(asctime)s - %(levelname)s - %(message)s')
logging.info('*'* 50)
logging.info(args.init_checkpoint)
# logging.info(f'values:{values}')
logging.info(f'acc1_mean: {acc1_mean:.4f}')
logging.info(f'acc1_stddev: {acc1_stddev:.4f}')
logging.info(f'acc2_mean: {acc2_mean:.4f}')
logging.info(f'acc2_stddev: {acc2_stddev:.4f}')
logging.info(f'rec1_mean: {rec1_mean:.4f}')
logging.info(f'rec1_stddev: {rec1_stddev:.4f}')
logging.info(f'rec2_mean: {rec2_mean:.4f}')
logging.info(f'rec2_stddev: {rec2_stddev:.4f}')
logging.info('*'* 50)