-
Notifications
You must be signed in to change notification settings - Fork 0
/
models_vit.py
executable file
·211 lines (174 loc) · 7.42 KB
/
models_vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# --------------------------------------------------------
from functools import partial
import torch
import torch.nn as nn
import numpy as np
import timm.models.vision_transformer
from timm.models.vision_transformer import PatchEmbed, Block
from util.patch_embed import PatchEmbed_new, PatchEmbed3D_new
class VisionTransformer(timm.models.vision_transformer.VisionTransformer):
""" Vision Transformer with support for global average pooling
"""
def __init__(self, global_pool=False, mask_2d=True, use_custom_patch=False, **kwargs):
super(VisionTransformer, self).__init__(**kwargs)
self.global_pool = global_pool
if self.global_pool:
norm_layer = kwargs['norm_layer']
embed_dim = kwargs['embed_dim']
self.fc_norm = norm_layer(embed_dim)
del self.norm # remove the original norm
self.mask_2d = mask_2d
self.use_custom_patch = use_custom_patch
num_heads=12
depth=12
mlp_ratio=4
def forward_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
x = x + self.pos_embed[:, 1:, :]
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
if self.global_pool:
x = x[:, 1:, :].mean(dim=1) # global pool without cls token
outcome = self.fc_norm(x)
else:
x = self.norm(x)
outcome = x[:, 0]
return outcome
def random_masking(self, x, mask_ratio):
"""
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return x_masked, mask, ids_restore
def random_masking_2d(self, x, mask_t_prob, mask_f_prob):
"""
2D: Spectrogram (msking t and f under mask_t_prob and mask_f_prob)
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N, L, D = x.shape # batch, length, dim
if self.use_custom_patch:
# # for AS
T=101 #64,101
F=12 #8,12
# # for ESC
# T=50
# F=12
# for SPC
# T=12
# F=12
else:
# ## for AS
T=64
F=8
# ## for ESC
#T=32
#F=8
## for SPC
# T=8
# F=8
# mask T
x = x.reshape(N, T, F, D)
len_keep_T = int(T * (1 - mask_t_prob))
noise = torch.rand(N, T, device=x.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
ids_keep = ids_shuffle[:, :len_keep_T]
index = ids_keep.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, F, D)
#x_masked = torch.gather(x, dim=1, index=index)
#x_masked = x_masked.reshape(N,len_keep_T*F,D)
x = torch.gather(x, dim=1, index=index) # N, len_keep_T(T'), F, D
# mask F
#x = x.reshape(N, T, F, D)
x = x.permute(0,2,1,3) # N T' F D => N F T' D
len_keep_F = int(F * (1 - mask_f_prob))
noise = torch.rand(N, F, device=x.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
ids_keep = ids_shuffle[:, :len_keep_F]
#index = ids_keep.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, T, D)
index = ids_keep.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, len_keep_T, D)
x_masked = torch.gather(x, dim=1, index=index)
x_masked = x_masked.permute(0,2,1,3) # N F' T' D => N T' F' D
#x_masked = x_masked.reshape(N,len_keep*T,D)
x_masked = x_masked.reshape(N,len_keep_F*len_keep_T,D)
return x_masked, None, None
def forward_features_mask(self, x, mask_t_prob, mask_f_prob):
B = x.shape[0] #4,1,1024,128
x = self.patch_embed(x) # 4, 512, 768
x = x + self.pos_embed[:, 1:, :]
if self.random_masking_2d:
x, mask, ids_restore = self.random_masking_2d(x, mask_t_prob, mask_f_prob)
else:
x, mask, ids_restore = self.random_masking(x, mask_t_prob)
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = self.pos_drop(x)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
if self.global_pool:
x = x[:, 1:, :].mean(dim=1) # global pool without cls token
outcome = self.fc_norm(x)
else:
x = self.norm(x)
outcome = x[:, 0]
return outcome
# overwrite original timm
def forward(self, x, v=None, mask_t_prob=0.0, mask_f_prob=0.0):
if mask_t_prob > 0.0 or mask_f_prob > 0.0:
x = self.forward_features_mask(x, mask_t_prob=mask_t_prob, mask_f_prob=mask_f_prob)
else:
x = self.forward_features(x)
x = self.head(x)
return x
def vit_small_patch16(**kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def vit_base_patch16(**kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def vit_large_patch16(**kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def vit_huge_patch14(**kwargs):
model = VisionTransformer(
patch_size=14, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model