-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathMalGAN_v2.py
174 lines (140 loc) · 7.42 KB
/
MalGAN_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from keras.layers import Input, Dense, Activation
from keras.layers.merge import Maximum, Concatenate
from keras.models import Model
from keras.optimizers import Adam
from numpy.lib import format
from sklearn.ensemble import RandomForestClassifier
from sklearn import linear_model, svm
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from load_data import *
import numpy as np
class MalGAN():
def __init__(self):
self.apifeature_dims = 74
self.z_dims = 10
self.hide_layers = 256
self.generator_layers = [self.apifeature_dims+self.z_dims, self.hide_layers, self.apifeature_dims]
self.substitute_detector_layers = [self.apifeature_dims, self.hide_layers, 1]
self.blackbox = 'RF'
optimizer = Adam(lr=0.001)
# Build and Train blackbox_detector
self.blackbox_detector = self.build_blackbox_detector()
# Build and compile the substitute_detector
self.substitute_detector = self.build_substitute_detector()
self.substitute_detector.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes malware and noise as input and generates adversarial malware examples
example = Input(shape=(self.apifeature_dims,))
noise = Input(shape=(self.z_dims,))
input = [example, noise]
malware_examples = self.generator(input)
# For the combined model we will only train the generator
self.substitute_detector.trainable = False
# The discriminator takes generated images as input and determines validity
validity = self.substitute_detector(malware_examples)
# The combined model (stacked generator and substitute_detector)
# Trains the generator to fool the discriminator
self.combined = Model(input, validity)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def build_blackbox_detector(self):
if self.blackbox is 'RF':
blackbox_detector = RandomForestClassifier(n_estimators=50, max_depth=5, random_state=1)
return blackbox_detector
def build_generator(self):
example = Input(shape=(self.apifeature_dims,))
noise = Input(shape=(self.z_dims,))
x = Concatenate(axis=1)([example, noise])
for dim in self.generator_layers[1:]:
x = Dense(dim)(x)
x = Activation(activation='sigmoid')(x)
x = Maximum()([example, x])
generator = Model([example, noise], x, name='generator')
generator.summary()
return generator
def build_substitute_detector(self):
input = Input(shape=(self.substitute_detector_layers[0],))
x = input
for dim in self.substitute_detector_layers[1:]:
x = Dense(dim)(x)
x = Activation(activation='sigmoid')(x)
substitute_detector = Model(input, x, name='substitute_detector')
substitute_detector.summary()
return substitute_detector
def load_data(self, filename):
data = load(filename)
xmal, ymal, xben, yben = data['xmal'], data['ymal'], data['xben'], data['yben']
# np.savez('mydata.npz', xmal=xmal, ymal=ymal, xben=xben, yben=yben,
# xmal_=xmal, ymal_=ymal, xben_=xmal, yben_=ymal, t=8)
return (xmal, ymal), (xben, yben)
def train(self, epochs, batch_size=32):
# Load the dataset
(xmal, ymal), (xben, yben) = self.load_data('mydata.npz')
xtrain_mal, xtest_mal, ytrain_mal, ytest_mal = train_test_split(xmal, ymal, test_size=0.20)
xtrain_ben, xtest_ben, ytrain_ben, ytest_ben = train_test_split(xben, yben, test_size=0.20)
# Train blackbox_detctor
self.blackbox_detector.fit(np.concatenate([xmal, xben]),
np.concatenate([ymal, yben]))
ytrain_ben_blackbox = self.blackbox_detector.predict(xtrain_ben)
Original_Train_TPR = self.blackbox_detector.score(xtrain_mal, ytrain_mal)
Original_Test_TPR = self.blackbox_detector.score(xtest_mal, ytest_mal)
Train_TPR, Test_TPR = [Original_Train_TPR], [Original_Test_TPR]
best_TPR = 1.0
for epoch in range(epochs):
for step in range(xtrain_mal.shape[0] // batch_size):
# ---------------------
# Train substitute_detector
# ---------------------
# Select a random batch of malware examples
idx = np.random.randint(0, xtrain_mal.shape[0], batch_size)
xmal_batch = xtrain_mal[idx]
noise = np.random.uniform(0, 1, (batch_size, self.z_dims)) #noise as random uniform
idx = np.random.randint(0, xmal_batch.shape[0], batch_size)
xben_batch = xtrain_ben[idx]
yben_batch = ytrain_ben_blackbox[idx]
# Generate a batch of new malware examples
gen_examples = self.generator.predict([xmal_batch, noise])
ymal_batch = self.blackbox_detector.predict(np.ones(gen_examples.shape)*(gen_examples > 0.5))
# Train the substitute_detector
d_loss_real = self.substitute_detector.train_on_batch(gen_examples, ymal_batch)
d_loss_fake = self.substitute_detector.train_on_batch(xben_batch, yben_batch)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
idx = np.random.randint(0, xtrain_mal.shape[0], batch_size)
xmal_batch = xtrain_mal[idx]
noise = np.random.uniform(0, 1, (batch_size, self.z_dims))
# Train the generator
g_loss = self.combined.train_on_batch([xmal_batch, noise], np.zeros((batch_size, 1)))
# Compute Train TPR
noise = np.random.uniform(0, 1, (xtrain_mal.shape[0], self.z_dims))
gen_examples = self.generator.predict([xtrain_mal, noise])
TPR = self.blackbox_detector.score(np.ones(gen_examples.shape) * (gen_examples > 0.5), ytrain_mal)
Train_TPR.append(TPR)
# Compute Test TPR
noise = np.random.uniform(0, 1, (xtest_mal.shape[0], self.z_dims))
gen_examples = self.generator.predict([xtest_mal, noise])
TPR = self.blackbox_detector.score(np.ones(gen_examples.shape) * (gen_examples > 0.5), ytest_mal)
Test_TPR.append(TPR)
# Save best model
if TPR < best_TPR:
self.combined.save_weights('saves/malgan.h5')
best_TPR = TPR
# Plot the progress
print("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
print('Original_Train_TPR: {0}, Adver_Train_TPR: {1}'.format(Original_Train_TPR, Train_TPR[-1]))
print('Original_Test_TPR: {0}, Adver_Test_TPR: {1}'.format(Original_Test_TPR, Test_TPR[-1]))
# Plot TPR
plt.figure()
plt.plot(range(len(Train_TPR)), Train_TPR, c='r', label='Training Set', linewidth=2)
plt.plot(range(len(Test_TPR)), Test_TPR, c='g', linestyle='--', label='Validation Set', linewidth=2)
plt.xlabel('Epoch')
plt.ylabel('TPR')
plt.legend()
plt.savefig('saves/Epoch_TPR.png')
plt.show()
if __name__ == '__main__':
malgan = MalGAN()
malgan.train(epochs=50, batch_size=64)