-
Notifications
You must be signed in to change notification settings - Fork 23
/
train_metarcnn.py
498 lines (448 loc) · 21.8 KB
/
train_metarcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# --------------------------------------------------------
# Pytorch Meta R-CNN
# Written by Anny Xu, Xiaopeng Yan, based on the code from Jianwei Yang
# --------------------------------------------------------
import _init_paths
import os
import sys
import numpy as np
import argparse
import pprint
import pdb
import time
import collections
import torch
import torch.nn as nn
import torch.optim as optim
import random
from tensorboardX import SummaryWriter
import torchvision.transforms as transforms
from torch.utils.data.sampler import Sampler
from torch.autograd import Variable
import torch.utils.data as Data
from roi_data_layer.roidb import combined_roidb, rank_roidb_ratio, filter_class_roidb
from roi_data_layer.roibatchLoader import roibatchLoader
from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir
from model.utils.net_utils import weights_normal_init, save_net, load_net, \
adjust_learning_rate, save_checkpoint, clip_gradient
from model.faster_rcnn.resnet import resnet
import pickle
from datasets.metadata import MetaDataset
from collections import OrderedDict
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Train Meta R-CNN network')
# Define training data and Model
parser.add_argument('--dataset', dest='dataset',
help='training dataset:coco2017,coco,pascal_07_12',
default='pascal_voc_0712', type=str)
parser.add_argument('--net', dest='net',
help='metarcnn',
default='metarcnn', type=str)
# Define display and save dir
parser.add_argument('--start_epoch', dest='start_epoch',
help='starting epoch',
default=1, type=int)
parser.add_argument('--epochs', dest='max_epochs',
help='number of epochs to train',
default=21, type=int)
parser.add_argument('--disp_interval', dest='disp_interval',
help='number of iterations to display',
default=100, type=int)
parser.add_argument('--checkpoint_interval', dest='checkpoint_interval',
help='number of iterations to display',
default=10000, type=int)
parser.add_argument('--save_dir', dest='save_dir',
help='directory to save models', default="./models",
type=str)
# Define training parameters
parser.add_argument('--nw', dest='num_workers',
help='number of worker to load data',
default=0, type=int)
parser.add_argument('--cuda', dest='cuda', default=True, type=bool,
help='whether use CUDA')
parser.add_argument('--bs', dest='batch_size',
help='batch_size',
default=1, type=int)
parser.add_argument('--cag', dest='class_agnostic', default=False, type=bool,
help='whether perform class_agnostic bbox regression')
# Define meta parameters
parser.add_argument('--meta_train', dest='meta_train', default=False, type=bool,
help='whether perform meta training')
parser.add_argument('--meta_loss', dest='meta_loss', default=False, type=bool,
help='whether perform adding meta loss')
parser.add_argument('--phase', dest='phase',
help='the phase of training process',
default=1, type=int)
parser.add_argument('--shots', dest='shots',
help='the number meta input of PRN network',
default=1, type=int)
parser.add_argument('--meta_type', dest='meta_type', default=1, type=int,
help='choose which sets of metaclass')
# config optimization
parser.add_argument('--o', dest='optimizer',
help='training optimizer',
default="sgd", type=str)
parser.add_argument('--lr', dest='lr',
help='starting learning rate',
default=0.001, type=float)
parser.add_argument('--lr_decay_step', dest='lr_decay_step',
help='step to do learning rate decay, unit is epoch',
default=4, type=int)
parser.add_argument('--lr_decay_gamma', dest='lr_decay_gamma',
help='learning rate decay ratio',
default=0.1, type=float)
# set training session
parser.add_argument('--s', dest='session',
help='training session',
default=1, type=int)
# resume trained model
parser.add_argument('--r', dest='resume',
help='resume checkpoint or not',
default=False, type=bool)
parser.add_argument('--checksession', dest='checksession',
help='checksession to load model',
default=1, type=int)
parser.add_argument('--checkepoch', dest='checkepoch',
help='checkepoch to load model',
default=10, type=int)
parser.add_argument('--checkpoint', dest='checkpoint',
help='checkpoint to load model',
default=21985, type=int)
# log and diaplay
parser.add_argument('--use_tfboard', dest='use_tfboard',
help='whether use tensorflow tensorboard',
default=True, type=bool)
parser.add_argument('--log_dir', dest='log_dir',
help='directory to save logs', default='logs',
type=str)
args = parser.parse_args()
return args
class sampler(Sampler):
def __init__(self, train_size, batch_size):
self.num_data = train_size
self.num_per_batch = int(train_size / batch_size)
self.batch_size = batch_size
self.range = torch.arange(0, batch_size).view(1, batch_size).long()
self.leftover_flag = False
if train_size % batch_size:
self.leftover = torch.arange(self.num_per_batch * batch_size, train_size).long()
self.leftover_flag = True
def __iter__(self):
rand_num = torch.randperm(self.num_per_batch).view(-1, 1) * self.batch_size
self.rand_num = rand_num.expand(self.num_per_batch, self.batch_size) + self.range
self.rand_num_view = self.rand_num.view(-1)
if self.leftover_flag:
self.rand_num_view = torch.cat((self.rand_num_view, self.leftover), 0)
return iter(self.rand_num_view)
def __len__(self):
return self.num_data
if __name__ == '__main__':
args = parse_args()
print('Called with args:')
print(args)
if args.use_tfboard:
writer = SummaryWriter(args.log_dir)
if args.dataset == "coco2017":
args.imdb_name = "coco_2017_train"
args.imdbval_name = "coco_2017_val"
args.set_cfgs = ['ANCHOR_SCALES', '[2, 4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '50']
elif args.dataset == "coco":
args.imdb_name = "coco_2014_train+coco_2014_valminusminival"
args.imdbval_name = "coco_2014_minival"
args.set_cfgs = ['ANCHOR_SCALES', '[2, 4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '50']
elif args.dataset == "pascal_voc_0712":
if args.phase == 1: # three types of base and novel classes splits
if args.meta_type == 1:
args.imdb_name = "voc_2007_train_first_split+voc_2012_train_first_split"
elif args.meta_type == 2:
args.imdb_name = "voc_2007_train_second_split+voc_2012_train_second_split"
elif args.meta_type == 3:
args.imdb_name = "voc_2007_train_third_split+voc_2012_train_third_split"
else:
args.imdb_name = "voc_2007_shots" # the default sampled shots saved path of meta classes in the first phase
args.imdbval_name = "voc_2007_test"
args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '20']
# the number of sets of metaclass
cfg.TRAIN.META_TYPE = args.meta_type
cfg.USE_GPU_NMS = args.cuda
if args.cuda:
cfg.CUDA = True
args.cfg_file = "cfgs/res101_ms.yml"
if args.cfg_file is not None:
cfg_from_file(args.cfg_file)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs)
print('Using config:')
pprint.pprint(cfg)
np.random.seed(cfg.RNG_SEED)
if torch.cuda.is_available() and not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
if args.phase == 1:
# First phase only use the base classes
shots = 200
if args.meta_type == 1: # use the first sets of base classes
metaclass = cfg.TRAIN.BASECLASSES_FIRST
if args.meta_type == 2: # use the second sets of base classes
metaclass = cfg.TRAIN.BASECLASSES_SECOND
if args.meta_type == 3: # use the third sets of base classes
metaclass = cfg.TRAIN.BASECLASSES_THIRD
else:
# Second phase only use fewshot number of base and novel classes
shots = args.shots
if args.meta_type == 1: # use the first sets of all classes
metaclass = cfg.TRAIN.ALLCLASSES_FIRST
if args.meta_type == 2: # use the second sets of all classes
metaclass = cfg.TRAIN.ALLCLASSES_SECOND
if args.meta_type == 3: # use the third sets of all classes
metaclass = cfg.TRAIN.ALLCLASSES_THIRD
# prepare meta sets for meta training
if args.meta_train:
# construct the input dataset of PRN network
img_size = 224
if args.phase == 1:
img_set = [('2007', 'trainval'), ('2012', 'trainval')]
else:
img_set = [('2007', 'trainval')]
metadataset = MetaDataset('data/VOCdevkit2007',
img_set, metaclass, img_size, shots=shots, shuffle=True,phase = args.phase)
metaloader = torch.utils.data.DataLoader(metadataset, batch_size=1, shuffle=False, num_workers=0,
pin_memory=True)
imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdb_name)
# filter roidb for the second phase
if args.phase == 2:
roidb = filter_class_roidb(roidb, args.shots, imdb)
ratio_list, ratio_index = rank_roidb_ratio(roidb)
imdb.set_roidb(roidb)
train_size = len(roidb)
print('{:d} roidb entries'.format(len(roidb)))
sys.stdout.flush()
output_dir = args.save_dir
if not os.path.exists(output_dir):
os.makedirs(output_dir)
sampler_batch = sampler(train_size, args.batch_size)
dataset = roibatchLoader(roidb, ratio_list, ratio_index, args.batch_size, imdb.num_classes, training=True)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size,
sampler=sampler_batch, num_workers=args.num_workers, pin_memory=False)
# initilize the network here
if args.net == 'metarcnn':
fasterRCNN = resnet(imdb.classes, 101, pretrained=True, class_agnostic=args.class_agnostic,
meta_train=args.meta_train, meta_loss=args.meta_loss)
fasterRCNN.create_architecture()
# initilize the optimizer here
lr = cfg.TRAIN.LEARNING_RATE
lr = args.lr
params = []
for key, value in dict(fasterRCNN.named_parameters()).items():
if value.requires_grad:
if 'bias' in key:
params += [{'params': [value], 'lr': lr * (cfg.TRAIN.DOUBLE_BIAS + 1), \
'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
else:
params += [{'params': [value], 'lr': lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]
if args.optimizer == "adam":
lr = lr * 0.1
optimizer = torch.optim.Adam(params)
elif args.optimizer == "sgd":
optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM)
if args.cuda:
fasterRCNN.cuda()
if args.resume:
load_name = os.path.join(output_dir,
'{}_metarcnn_{}_{}_{}.pth'.format(args.dataset, args.checksession,
args.checkepoch, args.checkpoint))
print("loading checkpoint %s" % (load_name))
checkpoint = torch.load(load_name)
args.session = checkpoint['session']
args.start_epoch = checkpoint['epoch']
# the number of classes in second phase is different from first phase
if args.phase == 2:
new_state_dict = OrderedDict()
# initilize params of RCNN_cls_score and RCNN_bbox_pred for second phase
RCNN_cls_score = nn.Linear(2048, imdb.num_classes)
RCNN_bbox_pred = nn.Linear(2048, 4 * imdb.num_classes)
for k, v in checkpoint['model'].items():
name = k
new_state_dict[name] = v
if 'RCNN_cls_score.weight' in k:
new_state_dict[name] = RCNN_cls_score.weight
if 'RCNN_cls_score.bias' in k:
new_state_dict[name] = RCNN_cls_score.bias
if 'RCNN_bbox_pred.weight' in k:
new_state_dict[name] = RCNN_bbox_pred.weight
if 'RCNN_bbox_pred.bias' in k:
new_state_dict[name] = RCNN_bbox_pred.bias
fasterRCNN.load_state_dict(new_state_dict)
elif args.phase == 1:
fasterRCNN.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr = optimizer.param_groups[0]['lr']
if 'pooling_mode' in checkpoint.keys():
cfg.POOLING_MODE = checkpoint['pooling_mode']
print("loaded checkpoint %s" % (load_name))
iters_per_epoch = int(train_size / args.batch_size)
for epoch in range(args.start_epoch, args.max_epochs):
fasterRCNN.train()
loss_temp = 0
start = time.time()
if epoch % (args.lr_decay_step + 1) == 0:
adjust_learning_rate(optimizer, args.lr_decay_gamma)
lr *= args.lr_decay_gamma
data_iter = iter(dataloader)
meta_iter = iter(metaloader)
for step in range(iters_per_epoch):
try:
data = next(data_iter)
except:
data_iter = iter(dataloader)
data = next(data_iter)
im_data_list = []
im_info_list = []
gt_boxes_list = []
num_boxes_list = []
# initilize the tensor holder here.
im_data = torch.FloatTensor(1)
im_info = torch.FloatTensor(1)
num_boxes = torch.LongTensor(1)
gt_boxes = torch.FloatTensor(1)
# ship to cuda
if args.cuda:
im_data = im_data.cuda()
im_info = im_info.cuda()
num_boxes = num_boxes.cuda()
gt_boxes = gt_boxes.cuda()
# make variable
im_data = Variable(im_data)
im_info = Variable(im_info)
num_boxes = Variable(num_boxes)
gt_boxes = Variable(gt_boxes)
if args.meta_train:
# get prn network input data
try:
prndata,prncls = next(meta_iter)
except:
meta_iter = iter(metaloader)
prndata, prncls = next(meta_iter)
im_data_list.append(Variable(torch.cat(prndata,dim=0).cuda()))
im_info_list.append(prncls)
im_data.data.resize_(data[0].size()).copy_(data[0])
im_info.data.resize_(data[1].size()).copy_(data[1])
gt_boxes.data.resize_(data[2].size()).copy_(data[2])
num_boxes.data.resize_(data[3].size()).copy_(data[3])
im_data_list.append(im_data)
im_info_list.append(im_info)
gt_boxes_list.append(gt_boxes)
num_boxes_list.append(num_boxes)
else:
im_data.data.resize_(data[0].size()).copy_(data[0])
im_info.data.resize_(data[1].size()).copy_(data[1])
gt_boxes.data.resize_(data[2].size()).copy_(data[2])
num_boxes.data.resize_(data[3].size()).copy_(data[3])
im_data_list.append(im_data)
im_info_list.append(im_info)
gt_boxes_list.append(gt_boxes)
num_boxes_list.append(num_boxes)
fasterRCNN.zero_grad()
rois, rpn_loss_cls, rpn_loss_box, \
RCNN_loss_cls, RCNN_loss_bbox, \
rois_label, cls_prob, bbox_pred, meta_loss = fasterRCNN(im_data_list, im_info_list, gt_boxes_list,
num_boxes_list)
if args.meta_train:
loss = rpn_loss_cls.mean() + rpn_loss_box.mean() + sum(RCNN_loss_cls) / args.batch_size + sum(
RCNN_loss_bbox) / args.batch_size + meta_loss / len(metaclass)
else:
loss = rpn_loss_cls.mean() + rpn_loss_box.mean() \
+ RCNN_loss_cls.mean() + RCNN_loss_bbox.mean()
loss_temp += loss.data[0]
# backward
optimizer.zero_grad()
loss.backward()
# if args.net == "vgg16" or "res101":
# clip_gradient(fasterRCNN, 10.)
optimizer.step()
torch.cuda.empty_cache()
if step % args.disp_interval == 0:
end = time.time()
if step > 0:
loss_temp /= args.disp_interval # loss_temp is aver loss
loss_rpn_cls = rpn_loss_cls.data[0]
loss_rpn_box = rpn_loss_box.data[0]
if not args.meta_train:
loss_rcnn_cls = RCNN_loss_cls.data[0]
loss_rcnn_box = RCNN_loss_bbox.data[0]
else:
loss_rcnn_cls = sum(RCNN_loss_cls) / args.batch_size
loss_rcnn_box = sum(RCNN_loss_bbox) / args.batch_size
loss_metarcnn = meta_loss / len(metaclass)
fg_cnt = torch.sum(rois_label.data.ne(0))
bg_cnt = rois_label.data.numel() - fg_cnt
print("[session %d][epoch %2d][iter %4d] loss: %.4f, lr: %.2e" \
% (args.session, epoch, step, loss_temp, lr))
print("\t\t\tfg/bg=(%d/%d), time cost: %f" % (fg_cnt, bg_cnt, end - start))
if args.meta_train:
print("\t\t\trpn_cls: %.4f, rpn_box: %.4f, rcnn_cls: %.4f, rcnn_box %.4f, meta_loss %.4f" \
% (loss_rpn_cls, loss_rpn_box, loss_rcnn_cls, loss_rcnn_box, loss_metarcnn ))
else:
print("\t\t\trpn_cls: %.4f, rpn_box: %.4f, rcnn_cls: %.4f, rcnn_box %.4f" \
% (loss_rpn_cls, loss_rpn_box, loss_rcnn_cls, loss_rcnn_box))
sys.stdout.flush()
if args.use_tfboard:
info = {
'loss': loss_temp,
'loss_rpn_cls': loss_rpn_cls,
'loss_rpn_box': loss_rpn_box,
'loss_rcnn_cls': loss_rcnn_cls,
'loss_rcnn_box': loss_rcnn_box
}
niter = (epoch - 1) * iters_per_epoch + step
for tag, value in info.items():
writer.add_scalar(tag, value, niter)
loss_temp = 0
start = time.time()
if args.meta_train:
save_name = os.path.join(output_dir,
'{}_{}_{}_{}_{}.pth'.format(str(args.dataset), str(args.net), shots, epoch,
step))
else:
save_name = os.path.join(output_dir, '{}_{}_{}_{}.pth'.format(str(args.dataset), str(args.net),
epoch, step))
save_checkpoint({
'session': args.session,
'epoch': epoch + 1,
'model': fasterRCNN.state_dict(),
'optimizer': optimizer.state_dict(),
'pooling_mode': cfg.POOLING_MODE,
'class_agnostic': args.class_agnostic,
}, save_name)
print('save model: {}'.format(save_name))
end = time.time()
print(end - start)
if args.meta_train: # to extract the mean classes attentions of shots for testing
class_attentions = collections.defaultdict(list)
meta_iter = iter(metaloader)
for i in range(shots):
prndata, prncls = next(meta_iter)
im_data_list = []
im_info_list = []
gt_boxes_list = []
num_boxes_list = []
im_data = torch.FloatTensor(1)
if args.cuda:
im_data = im_data.cuda()
im_data = Variable(im_data, volatile=True)
im_data.data.resize_(prndata.squeeze(0).size()).copy_(prndata.squeeze(0))
im_data_list.append(im_data)
attentions = fasterRCNN(im_data_list, im_info_list, gt_boxes_list, num_boxes_list,
average_shot=True)
for idx, cls in enumerate(prncls):
class_attentions[int(cls)].append(attentions[idx])
# calculate mean attention vectors of every class
mean_class_attentions = {k: sum(v) / len(v) for k, v in class_attentions.items()}
save_path = 'attentions'
if not os.path.exists(save_path):
os.mkdir(save_path)
with open(os.path.join(save_path, str(args.phase) + '_shots_' + str(args.shots) + '_mean_class_attentions.pkl'), 'wb') as f:
pickle.dump(mean_class_attentions, f, pickle.HIGHEST_PROTOCOL)
print('save ' + str(args.shots) + ' mean classes attentions done!')