-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwavegan_preprocess.py
29 lines (25 loc) · 1.18 KB
/
wavegan_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import librosa
import librosa.display
import matplotlib.pyplot as plt
import numpy as np
import os
# Define the paths to the audio files and the output directory
audio_dir = "C:/Users/Yash Vardhan Gautam/OneDrive - iiitnr.edu.in/Documents/Projects/MLA Project/clips"
output_dir = "C:/Users/Yash Vardhan Gautam/OneDrive - iiitnr.edu.in/Documents/Projects/MLA Project/data"
# Loop through each audio file in the directory
for audio_file in os.listdir(audio_dir):
# Load the audio file
audio_path = os.path.join(audio_dir, audio_file)
audio, sr = librosa.load(audio_path, sr=16000)
# Convert the audio waveform into a spectrogram image
S = librosa.feature.melspectrogram(y=audio, sr=sr, n_fft=2048, hop_length=512)
log_S = librosa.power_to_db(S, ref=np.max)
fig = plt.figure(figsize=[1,1])
ax = fig.add_subplot(111)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
ax.set_frame_on(False)
librosa.display.specshow(log_S, cmap='gray_r')
plt.savefig(os.path.join(output_dir, f"{audio_file}.png"), dpi=400, bbox_inches='tight',pad_inches=0)
plt.close()
print("Done preprocessing audio files!")