A list of interesting graph neural networks (GNN) material with a primary interest in recommendations and tensorflow that is continually updated and refined
- TensorFlow Implementations
- Articles
- Videos
- Public Datasets
- Recommendation Algorithms
- Research Papers
-
Colab Notebook For Graph Nets and Item Connections / Recommendations
-
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
-
Semi-Supervised Classification with Graph Convolutional Networks
-
MKR (multi-task learning for knowledge graph enhanced recommendation)
-
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model
-
A Gentle Introduction to Graph Neural Networks (Basics, DeepWalk, and GraphSage)
-
PinSage: A new graph convolutional neural network for web-scale recommender systems
-
Michael Bronstein - Geometric deep learning on graphs: going beyond Euclidean data
-
Yann LeCun - Graph Embedding, Content Understanding, and Self-Supervised Learning
-
DeepWalk: Turning Graphs Into Features via Network Embeddings with Neo4j
- Recommender Systems Datasets
- GroupLens
- Amazon Product Data
- Books, Electronics, Movies, etc.
- SNAP Datasets
- #nowplaying Dataset
- Last.fm Datasets
- Million Song Dataset
- Frappe
- Yahoo! Webscope Program
- music ratings, movie ratings, etc.
- Yelp Dataset Challenge
- MovieTweetings
- Foursquare
- Epinions
- Google Local
- location, phone number, time, rating, addres, GPS, etc.
- CiteUlike-t
- LibimSeTi
- Scholarly Paper Recommendation Datasets
- Netflix Prize Data Set
- FilmTrust,CiaoDVD
- Chicago Entree
- Douban
- BibSonomy
- Delicious
- Foursquare
- MACLab LJ Datasets
- Kaggle::Datasets
Movies Recommendation:
- MovieLens - Movie Recommendation Data Sets http://www.grouplens.org/node/73
- Yahoo! - Movie, Music, and Images Ratings Data Sets http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
- Jester - Movie Ratings Data Sets (Collaborative Filtering Dataset) http://www.ieor.berkeley.edu/~goldberg/jester-data/
- Cornell University - Movie-review data for use in sentiment-analysis experiments http://www.cs.cornell.edu/people/pabo/movie-review-data/
Music Recommendation:
- Last.fm - Music Recommendation Data Sets http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/index.html
- Yahoo! - Movie, Music, and Images Ratings Data Sets http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
- Audioscrobbler - Music Recommendation Data Sets http://www-etud.iro.umontreal.ca/~bergstrj/audioscrobbler_data.html
- Amazon - Audio CD recommendations http://131.193.40.52/data/
Books Recommendation:
- Institut für Informatik, Universität Freiburg - Book Ratings Data Sets http://www.informatik.uni-freiburg.de/~cziegler/BX/
Food Recommendation:
- Chicago Entree - Food Ratings Data Sets http://archive.ics.uci.edu/ml/datasets/Entree+Chicago+Recommendation+Data
Merchandise Recommendation:
- Amazon - Product Recommendation Data Sets http://131.193.40.52/data/
Healthcare Recommendation:
- Nursing Home - Provider Ratings Data Set http://data.medicare.gov/dataset/Nursing-Home-Compare-Provider-Ratings/mufm-vy8d
- Hospital Ratings - Survey of Patients Hospital Experiences http://data.medicare.gov/dataset/Survey-of-Patients-Hospital-Experiences-HCAHPS-/rj76-22dk
Dating Recommendation:
- www.libimseti.cz - Dating website recommendation (collaborative filtering) http://www.occamslab.com/petricek/data/
Scholarly Paper Recommendation:
- National University of Singapore - Scholarly Paper Recommendation http://www.comp.nus.edu.sg/~sugiyama/SchPaperRecData.html
- Basic of Recommender Systems
- Nearest Neighbor Search
- Classic Matrix Facotirzation
- Singular Value Decomposition (SVD)
- SVD++
- Content-based CF / Context-aware CF
- there are so many ...
- Advanced Matrix Factorization
- Factorization Machine
- Sparse LInear Method (SLIM)
- Learning to Rank
- Cold-start
- Network Embedding
- Translation Embedding
- Deep Learning
- Deep Neural Networks for YouTube Recommendations
- Deep Learning based Recommender System: A Survey and New Perspectives
- Neural Collaborative Filtering
- Collaborative Deep Learning for Recommender Systems
- Collaborative Denoising Auto-Encoders for Top-N Recommender Systems
- Collaborative recurrent autoencoder: recommend while learning to fill in the blanks
- TensorFlow Wide & Deep Learning
- Deep Neural Networks for YouTube Recommendations
- Collaborative Memory Network for Recommendation Systems
- On the Complexity of Exploration in Goal-driven Navigation. Maruan Al-Shedivat, Lisa Lee, Ruslan Salakhutdinov, Eric Xing
- Deep Graph Infomax. Petar Veličković, Liam Fedus, William Hamilton, Pietro Liò, Yoshua Bengio, Devon Hjelm
- Image-Level Attentional Context Modeling Using Nested-Graph Neural Networks. Guillaume Jaume, Behzad Bozorgtabar, Hazim Kemal Ekenel, Jean-Philippe Thiran, Maria Gabrani
- Compositional Language Understanding with Text-based Relational Reasoning. Koustuv Sinha, Shagun Sodhani, William L Hamilton, Joelle Pineau
- Learning Graph Representation via Formal Concept Analysis. Yuka Yoneda, Mahito Sugiyama, Takashi Washio
- A Simple Baseline Algorithm for Graph Classification. Nathan De Lara, Edouard Pineau
- Pitfalls of Graph Neural Network Evaluation. Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, Stephan Günnemann
- TNE: A Latent Model for Representation Learning on Networks. Abdulkadir Celikkanat, Fragkiskos Malliaros
- Using Ternary Rewards to Reason over Knowledge Graphs with Deep Reinforcement Learning. Frederic Godin, Anjishnu Kumar, Arpit Mittal
- A Case for Object Compositionality in GANs. Sjoerd van Steenkiste, Karol Kurach, Sylvain Gelly
- Learning DPPs by Sampling Inferred Negatives. Zelda Mariet, Mike Gartrell, Suvrit Sra
- LanczosNet: Multi-Scale Deep Graph Convolutional Networks. Renjie Liao, Zhizhen Zhao, Raquel Urtasun, Richard Zemel
- Chess2vec: Learning Vector Representations for Chess. Berk Kapicioglu, Ramiz Iqbal
- Sparse Logistic Regression Learns All Discrete Pairwise Graphical Models. Shanshan Wu, Sujay Sanghavi, Alex Dimakis
- Towards Sparse Hierarchical Graph Classifiers. Catalina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, Pietro Liò
- GRevnet: Improving Graph Neural Nets with Reversible Computation. Aviral Kumar, Jimmy Ba, Jamie Kiros, Kevin Swersky
- Detecting the Coarse Geometry of Networks. Melanie Weber, Emil Saucan, Jürgen Jost
- Modeling Attention Flow on Graphs. Xiaoran Xu
- Learning Generative Models across Incomparable Spaces. Charlotte Bunne, David Alvarez-Melis, Andreas Krause , Stefanie Jegelka Best Paper Award
- Hierarchical Bipartite Graph Convolution Networks. Marcel Nassar
- Non-local RoI for Cross-Object Perception. Shou-Yao Tseng, Hwann-Tzong Chen, Shao-Heng Tai, Tyng-Luh Liu
- Node Attribute Prediction: An Evaluation of Within- versus Across-Network Tasks. Kristen M. Altenburger, Johan Ugander
- Implicit Maximum Likelihood Estimation. Ke Li, Jitendra Malik
- Variational learning across domains with triplet information. Rita Kuznetsova
- Fast k-Nearest Neighbour Search via Prioritized DCI. Ke Li, Jitendra Malik
- Deep Determinantal Point Processes. Mike Gartrell, Elvis Dohmatob
- Higher-Order Graph Convolutional Layer. Sami A Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Hrayr Harutyunyan
- Convolutional Set Matching for Graph Similarity. Yunsheng Bai, Hao Ding, Yizhou Sun, Wei Wang
- Improving Generalization for Abstract Reasoning Tasks Using Disentangled Feature Representations. Xander Steenbrugge, Tim Verbelen, Bart Dhoedt, Sam Leroux
- From Node Embedding to Graph Embedding: Scalable Global Graph Kernel via Random Features. Lingfei Wu, Ian En-Hsu Yen, Kun Xu, Liang Zhao, Yinglong Xia, Michael Witbrock
- A Neural Framework for Learning DAG to DAG Translation. M. Clara De Paolis Kaluza, Saeed Amizadeh, Rose Yu
- Semi-supervised learning for clusterable graph embeddings with NMF. Priyesh Vijayan, Anasua Mitra, Srinivasan Parthasarathy, Balaraman Ravindran
- Lifted Inference for Faster Training in end-to-end neural-CRF models. Yatin Nandwani, Ankit Anand, Mausam , Parag Singla
- Link Prediction in Dynamic Graphs for Recommendation. Samuel G. Fadel, Ricardo Torres
- Curvature and Representation Learning: Identifying Embedding Spaces for Relational Data. Melanie Weber, Maximillian Nickel
- Multi-Task Graph Autoencoders. Phi Vu Tran
- Personalized Neural Embeddings for Collaborative Filtering with Text. Guangneng Hu, Yu Zhang
- Symbolic Relation Networks for Reinforcement Learning. Dhaval D Adjodah, Tim Klinger, Josh Joseph
- Extending the Capacity of CVAE for Face Sythesis and Modeling. Shengju Qian, Wayne Wu, Yangxiaokang Liu, Beier Zhu, Fumin Shen
- SARN: Relational Reasoning through Sequential Attention. Jinwon An, Seongwon Lyu, Sungzoon Cho
- Pairwise Relational Networks using Local Appearance Features for Face Recognition. Bong-Nam Kang, YongHyun Kim, Daijin Kim
- Compositional Fairness Constraints for Graph Embeddings. Avishek Bose, William L Hamilton
- Improved Addressing in the Differentiable Neural Computer. Róbert Csordás, Jürgen Schmidhuber
- Efficient Unsupervised Word Sense Induction, Disambiguation and Embedding. Behrouz Haji Soleimani, Habibeh Naderi, Stan Matwin
- Importance of object selection in Relational Reasoning tasks. Kshitij Dwivedi, Gemma Roig
- On Robust Learning of Ising Models. Erik Lindgren, Vatsal Shah, Yanyao Shen, Alex Dimakis, Adam Klivans
- Feed-Forward Neural Networks need Inductive Bias to Learn Equality Relations. Tillman Weyde, Radha Manisha Kopparti
- Tensor Random Projection for Low Memory Dimension Reduction. Yang Guo, Yiming Sun, Madeleine Udell, Joel Tropp
- Leveraging Representation and Inference through Deep Relational Learning. Maria Leonor Pacheco, Ibrahim Dalal, Dan Goldwasser
- Learning Embeddings for Approximate Lifted Inference in MLNs. Maminur Islam, Somdeb Sarkhel, Deepak Venugopal
-
Graph Neural Networks: A Review of Methods and Applications. Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Maosong Sun. 2018. paper
-
A Comprehensive Survey on Graph Neural Networks. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu. 2019. paper
-
Deep Learning on Graphs: A Survey. Ziwei Zhang, Peng Cui, Wenwu Zhu. 2018. paper
-
Relational Inductive Biases, Deep Learning, and Graph Networks. Battaglia, Peter W and Hamrick, Jessica B and Bapst, Victor and Sanchez-Gonzalez, Alvaro and Zambaldi, Vinicius and Malinowski, Mateusz and Tacchetti, Andrea and Raposo, David and Santoro, Adam and Faulkner, Ryan and others. 2018. paper
-
Geometric Deep Learning: Going beyond Euclidean data. Bronstein, Michael M and Bruna, Joan and LeCun, Yann and Szlam, Arthur and Vandergheynst, Pierre. IEEE SPM 2017. paper
-
Computational Capabilities of Graph Neural Networks. Scarselli, Franco and Gori, Marco and Tsoi, Ah Chung and Hagenbuchner, Markus and Monfardini, Gabriele. IEEE TNN 2009. paper
-
Neural Message Passing for Quantum Chemistry. Gilmer, Justin and Schoenholz, Samuel S and Riley, Patrick F and Vinyals, Oriol and Dahl, George E. 2017. paper
-
Non-local Neural Networks. Wang, Xiaolong and Girshick, Ross and Gupta, Abhinav and He, Kaiming. CVPR 2018. paper
-
The Graph Neural Network Model. Scarselli, Franco and Gori, Marco and Tsoi, Ah Chung and Hagenbuchner, Markus and Monfardini, Gabriele. IEEE TNN 2009. paper
-
A new model for learning in graph domains. Marco Gori, Gabriele Monfardini, Franco Scarselli. IJCNN 2005. paper
-
Graph Neural Networks for Ranking Web Pages. Franco Scarselli, Sweah Liang Yong, Marco Gori, Markus Hagenbuchner, Ah Chung Tsoi, Marco Maggini. WI 2005. paper
-
Gated Graph Sequence Neural Networks. Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel. ICLR 2016. paper
-
Geometric deep learning on graphs and manifolds using mixture model cnns. Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, Michael M. Bronstein. CVPR 2017. paper
-
Spectral Networks and Locally Connected Networks on Graphs. Joan Bruna, Wojciech Zaremba, Arthur Szlam, Yann LeCun. ICLR 2014. paper
-
Deep Convolutional Networks on Graph-Structured Data. Mikael Henaff, Joan Bruna, Yann LeCun. 2015. paper
-
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst. NIPS 2016. paper
-
Learning Convolutional Neural Networks for Graphs. Mathias Niepert, Mohamed Ahmed, Konstantin Kutzkov. ICML 2016. paper
-
Semi-Supervised Classification with Graph Convolutional Networks. Thomas N. Kipf, Max Welling. ICLR 2017. paper
-
Graph Attention Networks. Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio. ICLR 2018. paper
-
Deep Sets. Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, Alexander Smola. NIPS 2017. paper
-
Graph Partition Neural Networks for Semi-Supervised Classification. Renjie Liao, Marc Brockschmidt, Daniel Tarlow, Alexander L. Gaunt, Raquel Urtasun, Richard Zemel. 2018. paper
-
Covariant Compositional Networks For Learning Graphs. Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, Shubhendu Trivedi. 2018. paper
-
Modeling Relational Data with Graph Convolutional Networks. Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling. ESWC 2018. paper
-
Stochastic Training of Graph Convolutional Networks with Variance Reduction. Jianfei Chen, Jun Zhu, Le Song. ICML 2018. paper
-
Learning Steady-States of Iterative Algorithms over Graphs. Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alex Smola, Le Song. ICML 2018. paper
-
Deriving Neural Architectures from Sequence and Graph Kernels. Tao Lei, Wengong Jin, Regina Barzilay, Tommi Jaakkola. ICML 2017. paper
-
Adaptive Graph Convolutional Neural Networks. Ruoyu Li, Sheng Wang, Feiyun Zhu, Junzhou Huang. AAAI 2018. paper
-
Graph-to-Sequence Learning using Gated Graph Neural Networks. Daniel Beck, Gholamreza Haffari, Trevor Cohn. ACL 2018. paper
-
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning. Qimai Li, Zhichao Han, Xiao-Ming Wu. AAAI 2018. paper
-
Graphical-Based Learning Environments for Pattern Recognition. Franco Scarselli, Ah Chung Tsoi, Marco Gori, Markus Hagenbuchner. SSPR/SPR 2004. paper
-
A Comparison between Recursive Neural Networks and Graph Neural Networks. Vincenzo Di Massa, Gabriele Monfardini, Lorenzo Sarti, Franco Scarselli, Marco Maggini, Marco Gori. IJCNN 2006. paper
-
Graph Neural Networks for Object Localization. Gabriele Monfardini, Vincenzo Di Massa, Franco Scarselli, Marco Gori. ECAI 2006. paper
-
Knowledge-Guided Recurrent Neural Network Learning for Task-Oriented Action Prediction. Liang Lin, Lili Huang, Tianshui Chen, Yukang Gan, Hui Cheng. ICME 2017. paper
-
Semantic Object Parsing with Graph LSTM. Xiaodan LiangXiaohui ShenJiashi FengLiang Lin, Shuicheng Yan. ECCV 2016. paper
-
CelebrityNet: A Social Network Constructed from Large-Scale Online Celebrity Images. Li-Jia Li, David A. Shamma, Xiangnan Kong, Sina Jafarpour, Roelof Van Zwol, Xuanhui Wang. TOMM 2015. paper
-
Inductive Representation Learning on Large Graphs. William L. Hamilton, Rex Ying, Jure Leskovec. NIPS 2017. paper
-
Graph Classification using Structural Attention. John Boaz Lee, Ryan Rossi, Xiangnan Kong. KDD 18. paper
-
Adversarial Attacks on Neural Networks for Graph Data. Daniel Zügner, Amir Akbarnejad, Stephan Günnemann. KDD 18. paper
-
Large-Scale Learnable Graph Convolutional Networks. Hongyang Gao, Zhengyang Wang, Shuiwang Ji. KDD 18. paper
-
Contextual Graph Markov Model: A Deep and Generative Approach to Graph Processing. Davide Bacciu, Federico Errica, Alessio Micheli. ICML 2018. paper
-
Diffusion-Convolutional Neural Networks. James Atwood, Don Towsley. NIPS 2016. paper
-
Neural networks for relational learning: an experimental comparison. Werner Uwents, Gabriele Monfardini, Hendrik Blockeel, Marco Gori, Franco Scarselli. Machine Learning 2011. paper
-
FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling. Jie Chen, Tengfei Ma, Cao Xiao. ICLR 2018. paper
-
Adaptive Sampling Towards Fast Graph Representation Learning. Wenbing Huang, Tong Zhang, Yu Rong, Junzhou Huang. NeurIPS 2018. paper
-
Structure-Aware Convolutional Neural Networks. Jianlong Chang, Jie Gu, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, Chunhong Pan. NeurIPS 2018. paper
-
Bayesian Semi-supervised Learning with Graph Gaussian Processes. Yin Cheng Ng, Nicolò Colombo, Ricardo Silva. NeurIPS 2018. paper
-
Mean-field theory of graph neural networks in graph partitioning. Tatsuro Kawamoto, Masashi Tsubaki, Tomoyuki Obuchi. NeurIPS 2018. paper
-
Hierarchical Graph Representation Learning with Differentiable Pooling. Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, Jure Leskovec. NeurIPS 2018. paper
-
How Powerful are Graph Neural Networks? Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka. ICLR 2019. paper
-
Graph Capsule Convolutional Neural Networks. Saurabh Verma, Zhi-Li Zhang. ICML 2018 Workshop. paper
-
Capsule Graph Neural Network. Zhang Xinyi, Lihui Chen. ICLR 2019. paper
-
Discovering objects and their relations from entangled scene representations. David Raposo, Adam Santoro, David Barrett, Razvan Pascanu, Timothy Lillicrap, Peter Battaglia. ICLR Workshop 2017. paper
-
A simple neural network module for relational reasoning. Adam Santoro, David Raposo, David G.T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, Timothy Lillicrap. NIPS 2017. paper
-
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models. S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Koray Kavukcuoglu, Geoffrey E. Hinton. NIPS 2016. paper
-
Beyond Categories: The Visual Memex Model for Reasoning About Object Relationships. Tomasz Malisiewicz, Alyosha Efros. NIPS 2009. paper
-
Understanding Kin Relationships in a Photo. Siyu Xia, Ming Shao, Jiebo Luo, Yun Fu. TMM 2012. paper
-
Graph-Structured Representations for Visual Question Answering. Damien Teney, Lingqiao Liu, Anton van den Hengel. CVPR 2017. paper
-
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. Sijie Yan, Yuanjun Xiong, Dahua Lin. AAAI 2018. paper
-
Few-Shot Learning with Graph Neural Networks. Victor Garcia, Joan Bruna. ICLR 2018. paper
-
The More You Know: Using Knowledge Graphs for Image Classification. Kenneth Marino, Ruslan Salakhutdinov, Abhinav Gupta. CVPR 2017. paper
-
Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs. Xiaolong Wang, Yufei Ye, Abhinav Gupta. CVPR 2018. paper
-
Rethinking Knowledge Graph Propagation for Zero-Shot Learning. Michael Kampffmeyer, Yinbo Chen, Xiaodan Liang, Hao Wang, Yujia Zhang, Eric P. Xing. 2018. paper
-
Interaction Networks for Learning about Objects, Relations and Physics. Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu. NIPS 2016. paper
-
A Compositional Object-Based Approach to Learning Physical Dynamics. Michael B. Chang, Tomer Ullman, Antonio Torralba, Joshua B. Tenenbaum. ICLR 2017. paper
-
Visual Interaction Networks: Learning a Physics Simulator from Vide.o Nicholas Watters, Andrea Tacchetti, Théophane Weber, Razvan Pascanu, Peter Battaglia, Daniel Zoran. NIPS 2017. paper
-
Relational neural expectation maximization: Unsupervised discovery of objects and their interactions. Sjoerd van Steenkiste, Michael Chang, Klaus Greff, Jürgen Schmidhuber. ICLR 2018. paper
-
Graph networks as learnable physics engines for inference and control. Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia Hadsell, Peter Battaglia. ICML 2018. paper
-
Learning Multiagent Communication with Backpropagation. Sainbayar Sukhbaatar, Arthur Szlam, Rob Fergus. NIPS 2016. paper
-
VAIN: Attentional Multi-agent Predictive Modeling. Yedid Hoshen. NIPS 2017 paper
-
Neural Relational Inference for Interacting Systems. Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, Richard Zemel. ICML 2018. paper
-
Translating Embeddings for Modeling Multi-relational Data. Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, Oksana Yakhnenko. NIPS 2013. paper
-
Representation learning for visual-relational knowledge graphs. Daniel Oñoro-Rubio, Mathias Niepert, Alberto García-Durán, Roberto González, Roberto J. López-Sastre. 2017. paper
-
Knowledge Transfer for Out-of-Knowledge-Base Entities : A Graph Neural Network Approach. Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, Yuji Matsumoto. IJCAI 2017. paper
-
Representation Learning on Graphs with Jumping Knowledge Networks. Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, Stefanie Jegelka. ICML 2018. paper
-
Multi-Label Zero-Shot Learning with Structured Knowledge Graphs. Chung-Wei Lee, Wei Fang, Chih-Kuan Yeh, Yu-Chiang Frank Wang. CVPR 2018. paper
-
Dynamic Graph Generation Network: Generating Relational Knowledge from Diagrams. Daesik Kim, Youngjoon Yoo, Jeesoo Kim, Sangkuk Lee, Nojun Kwak. CVPR 2018. paper
-
Deep Reasoning with Knowledge Graph for Social Relationship Understanding. Zhouxia Wang, Tianshui Chen, Jimmy Ren, Weihao Yu, Hui Cheng, Liang Lin. IJCAI 2018. paper
-
Constructing Narrative Event Evolutionary Graph for Script Event Prediction. Zhongyang Li, Xiao Ding, Ting Liu. IJCAI 2018. paper
-
Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering. Daniil Sorokin, Iryna Gurevych. COLING 2018. paper
-
Convolutional networks on graphs for learning molecular fingerprints. David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, Ryan P. Adams. NIPS 2015. paper
-
Molecular Graph Convolutions: Moving Beyond Fingerprints. Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, Patrick Riley. Journal of computer-aided molecular design 2016. paper
-
Protein Interface Prediction using Graph Convolutional Networks. Alex Fout, Jonathon Byrd, Basir Shariat, Asa Ben-Hur. NIPS 2017. paper
-
Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting. Zhiyong Cui, Kristian Henrickson, Ruimin Ke, Yinhai Wang. 2018. paper
-
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. Bing Yu, Haoteng Yin, Zhanxing Zhu. IJCAI 2018. paper
-
Semi-supervised User Geolocation via Graph Convolutional Networks. Afshin Rahimi, Trevor Cohn, Timothy Baldwin. ACL 2018. paper
-
Dynamic Graph CNN for Learning on Point Clouds. Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon. CVPR 2018. paper
-
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. CVPR 2018. paper
-
3D Graph Neural Networks for RGBD Semantic Segmentation. Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, Raquel Urtasun. CVPR 2017. paper
-
Iterative Visual Reasoning Beyond Convolutions. Xinlei Chen, Li-Jia Li, Li Fei-Fei, Abhinav Gupta. CVPR 2018. paper
-
Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs. Martin Simonovsky, Nikos Komodakis. CVPR 2017. paper
-
Situation Recognition with Graph Neural Networks. Ruiyu Li, Makarand Tapaswi, Renjie Liao, Jiaya Jia, Raquel Urtasun, Sanja Fidler. ICCV 2017. paper
-
Conversation Modeling on Reddit using a Graph-Structured LSTM. Vicky Zayats, Mari Ostendorf. TACL 2018. paper
-
Graph Convolutional Networks for Text Classification. Liang Yao, Chengsheng Mao, Yuan Luo. AAAI 2019. paper
-
Attention Is All You Need. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. NIPS 2017. paper
-
Self-Attention with Relative Position Representations. Peter Shaw, Jakob Uszkoreit, Ashish Vaswani. NAACL 2018. paper
-
Hyperbolic Attention Networks. Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, Nando de Freitas 2018. paper