forked from opendatalab/PDF-Extract-Kit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pdf_extract.py
249 lines (225 loc) · 11.4 KB
/
pdf_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import cv2
import json
import yaml
import time
import pytz
import datetime
import argparse
import shutil
import torch
import numpy as np
from paddleocr import draw_ocr
from PIL import Image, ImageDraw, ImageFont
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
from ultralytics import YOLO
from unimernet.common.config import Config
import unimernet.tasks as tasks
from unimernet.processors import load_processor
from modules.latex2png import tex2pil, zhtext2pil
from modules.extract_pdf import load_pdf_fitz
from modules.layoutlmv3.model_init import Layoutlmv3_Predictor
from modules.self_modify import ModifiedPaddleOCR
from modules.post_process import get_croped_image, latex_rm_whitespace
def mfd_model_init(weight):
mfd_model = YOLO(weight)
return mfd_model
def mfr_model_init(weight_dir, device='cpu'):
args = argparse.Namespace(cfg_path="modules/UniMERNet/configs/demo.yaml", options=None)
cfg = Config(args)
cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
cfg.config.model.model_config.model_name = weight_dir
cfg.config.model.tokenizer_config.path = weight_dir
task = tasks.setup_task(cfg)
model = task.build_model(cfg)
model = model.to(device)
vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
return model, vis_processor
def layout_model_init(weight):
model = Layoutlmv3_Predictor(weight)
return model
class MathDataset(Dataset):
def __init__(self, image_paths, transform=None):
self.image_paths = image_paths
self.transform = transform
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
# if not pil image, then convert to pil image
if isinstance(self.image_paths[idx], str):
raw_image = Image.open(self.image_paths[idx])
else:
raw_image = self.image_paths[idx]
if self.transform:
image = self.transform(raw_image)
return image
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--pdf', type=str)
parser.add_argument('--output', type=str, default="output")
parser.add_argument('--vis', action='store_true')
parser.add_argument('--render', action='store_true')
args = parser.parse_args()
print(args)
tz = pytz.timezone('Asia/Shanghai')
now = datetime.datetime.now(tz)
print(now.strftime('%Y-%m-%d %H:%M:%S'))
print('Started!')
## ======== model init ========##
with open('configs/model_configs.yaml') as f:
model_configs = yaml.load(f, Loader=yaml.FullLoader)
img_size = model_configs['model_args']['img_size']
conf_thres = model_configs['model_args']['conf_thres']
iou_thres = model_configs['model_args']['iou_thres']
device = model_configs['model_args']['device']
dpi = model_configs['model_args']['pdf_dpi']
mfd_model = mfd_model_init(model_configs['model_args']['mfd_weight'])
mfr_model, mfr_vis_processors = mfr_model_init(model_configs['model_args']['mfr_weight'], device=device)
mfr_transform = transforms.Compose([mfr_vis_processors, ])
layout_model = layout_model_init(model_configs['model_args']['layout_weight'])
ocr_model = ModifiedPaddleOCR(show_log=True)
print(now.strftime('%Y-%m-%d %H:%M:%S'))
print('Model init done!')
## ======== model init ========##
start = time.time()
if os.path.isdir(args.pdf):
all_pdfs = [os.path.join(args.pdf, name) for name in os.listdir(args.pdf)]
else:
all_pdfs = [args.pdf]
print("total files:", len(all_pdfs))
for idx, single_pdf in enumerate(all_pdfs):
try:
img_list = load_pdf_fitz(single_pdf, dpi=dpi)
except:
img_list = None
print("unexpected pdf file:", single_pdf)
if img_list is None:
continue
print("pdf index:", idx, "pages:", len(img_list))
# layout检测 + 公式检测
doc_layout_result = []
latex_filling_list = []
mf_image_list = []
for idx, image in enumerate(img_list):
img_H, img_W = image.shape[0], image.shape[1]
layout_res = layout_model(image, ignore_catids=[])
# 公式检测
mfd_res = mfd_model.predict(image, imgsz=img_size, conf=conf_thres, iou=iou_thres, verbose=True)[0]
for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
new_item = {
'category_id': 13 + int(cla.item()),
'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
'score': round(float(conf.item()), 2),
'latex': '',
}
layout_res['layout_dets'].append(new_item)
latex_filling_list.append(new_item)
bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
mf_image_list.append(bbox_img)
layout_res['page_info'] = dict(
page_no = idx,
height = img_H,
width = img_W
)
doc_layout_result.append(layout_res)
# 公式识别,因为识别速度较慢,为了提速,把单个pdf的所有公式裁剪完,一起批量做识别。
a = time.time()
dataset = MathDataset(mf_image_list, transform=mfr_transform)
dataloader = DataLoader(dataset, batch_size=128, num_workers=32)
mfr_res = []
for imgs in dataloader:
imgs = imgs.to(device)
output = mfr_model.generate({'image': imgs})
mfr_res.extend(output['pred_str'])
for res, latex in zip(latex_filling_list, mfr_res):
res['latex'] = latex_rm_whitespace(latex)
b = time.time()
print("formula nums:", len(mf_image_list), "mfr time:", round(b-a, 2))
# ocr识别
for idx, image in enumerate(img_list):
pil_img = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
single_page_res = doc_layout_result[idx]['layout_dets']
single_page_mfdetrec_res = []
for res in single_page_res:
if int(res['category_id']) in [13, 14]:
xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
single_page_mfdetrec_res.append({
"bbox": [xmin, ymin, xmax, ymax],
})
for res in single_page_res:
if int(res['category_id']) in [0, 1, 2, 4, 6, 7]: #需要进行ocr的类别
xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
crop_box = [xmin, ymin, xmax, ymax]
cropped_img = Image.new('RGB', pil_img.size, 'white')
cropped_img.paste(pil_img.crop(crop_box), crop_box)
cropped_img = cv2.cvtColor(np.asarray(cropped_img), cv2.COLOR_RGB2BGR)
ocr_res = ocr_model.ocr(cropped_img, mfd_res=single_page_mfdetrec_res)[0]
if ocr_res:
for box_ocr_res in ocr_res:
p1, p2, p3, p4 = box_ocr_res[0]
text, score = box_ocr_res[1]
doc_layout_result[idx]['layout_dets'].append({
'category_id': 15,
'poly': p1 + p2 + p3 + p4,
'score': round(score, 2),
'text': text,
})
output_dir = args.output
os.makedirs(output_dir, exist_ok=True)
basename = os.path.basename(single_pdf)[0:-4]
with open(os.path.join(output_dir, f'{basename}.json'), 'w') as f:
json.dump(doc_layout_result, f)
if args.vis:
color_palette = [
(255,64,255),(255,255,0),(0,255,255),(255,215,135),(215,0,95),(100,0,48),(0,175,0),(95,0,95),(175,95,0),(95,95,0),
(95,95,255),(95,175,135),(215,95,0),(0,0,255),(0,255,0),(255,0,0),(0,95,215),(0,0,0),(0,0,0),(0,0,0)
]
id2names = ["title", "plain_text", "abandon", "figure", "figure_caption", "table", "table_caption", "table_footnote",
"isolate_formula", "formula_caption", " ", " ", " ", "inline_formula", "isolated_formula", "ocr_text"]
vis_pdf_result = []
for idx, image in enumerate(img_list):
single_page_res = doc_layout_result[idx]['layout_dets']
vis_img = Image.new('RGB', Image.fromarray(image).size, 'white') if args.render else Image.fromarray(cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
draw = ImageDraw.Draw(vis_img)
for res in single_page_res:
label = int(res['category_id'])
if label > 15: # 筛选要可视化的类别
continue
label_name = id2names[label]
x_min, y_min = int(res['poly'][0]), int(res['poly'][1])
x_max, y_max = int(res['poly'][4]), int(res['poly'][5])
if args.render and label in [13, 14, 15]:
try:
if label in [13, 14]: # 渲染公式
window_img = tex2pil(res['latex'])[0]
else:
if True: # 渲染中文
window_img = zhtext2pil(res['text'])
else: # 渲染英文
window_img = tex2pil([res['text']], tex_type="text")[0]
ratio = min((x_max - x_min) / window_img.width, (y_max - y_min) / window_img.height) - 0.05
window_img = window_img.resize((int(window_img.width * ratio), int(window_img.height * ratio)))
vis_img.paste(window_img, (int(x_min + (x_max-x_min-window_img.width) / 2), int(y_min + (y_max-y_min-window_img.height) / 2)))
except Exception as e:
print(f"got exception on {text}, error info: {e}")
draw.rectangle([x_min, y_min, x_max, y_max], fill=None, outline=color_palette[label], width=1)
fontText = ImageFont.truetype("assets/fonts/simhei.ttf", 15, encoding="utf-8")
draw.text((x_min, y_min), label_name, color_palette[label], font=fontText)
width, height = vis_img.size
width, height = int(0.75*width), int(0.75*height)
vis_img = vis_img.resize((width, height))
vis_pdf_result.append(vis_img)
first_page = vis_pdf_result.pop(0)
first_page.save(os.path.join(output_dir, f'{basename}.pdf'), 'PDF', resolution=100, save_all=True, append_images=vis_pdf_result)
try:
shutil.rmtree('./temp')
except:
pass
now = datetime.datetime.now(tz)
end = time.time()
print(now.strftime('%Y-%m-%d %H:%M:%S'))
print('Finished! time cost:', int(end-start), 's')