-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathlayers.py
65 lines (59 loc) · 2.09 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
class Conv2DWeightNorm(tf.layers.Conv2D):
def build(self, input_shape):
self.wn_g = self.add_weight(
name='wn_g',
shape=(self.filters,),
dtype=self.dtype,
initializer=tf.initializers.ones,
trainable=True,
)
super(Conv2DWeightNorm, self).build(input_shape)
square_sum = tf.reduce_sum(
tf.square(self.kernel), [0, 1, 2], keepdims=False)
inv_norm = tf.rsqrt(square_sum)
self.kernel = self.kernel * (inv_norm * self.wn_g)
def conv2d_weight_norm(inputs,
filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format='channels_last',
dilation_rate=(1, 1),
activation=None,
use_bias=True,
kernel_initializer=None,
bias_initializer=tf.zeros_initializer(),
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
trainable=True,
name=None,
reuse=None):
layer = Conv2DWeightNorm(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
dilation_rate=dilation_rate,
activation=activation,
use_bias=use_bias,
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer,
kernel_regularizer=kernel_regularizer,
bias_regularizer=bias_regularizer,
activity_regularizer=activity_regularizer,
kernel_constraint=kernel_constraint,
bias_constraint=bias_constraint,
trainable=trainable,
name=name,
dtype=inputs.dtype.base_dtype,
_reuse=reuse,
_scope=name)
return layer.apply(inputs)