-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
197 lines (154 loc) · 4.76 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import json
import logging
import shutil
import csv
import torch
class TrainClock(object):
""" Clock object to track epoch and iteration during training
"""
def __init__(self):
self.epoch = 0
self.minibatch = 0
self.iteration = 0
# used for ema
self.scratch_iter = 0
def tick(self):
self.minibatch += 1
self.iteration += 1
# used for ema
self.scratch_iter += 1
def tock(self):
self.epoch += 1
self.minibatch = 0
def make_checkpoint(self):
return {
'epoch': self.epoch,
'minibatch': self.minibatch,
'iteration': self.iteration
}
def restore_checkpoint(self, clock_dict):
self.epoch = clock_dict['epoch']
self.minibatch = clock_dict['minibatch']
self.iteration = clock_dict['iteration']
class KSchedule(object):
""" linear interpolation of k
"""
def __init__(self, k_init, k_safe, max_iters):
self.k_init = k_init
self.k_safe = k_safe
self.max_iters = max_iters
def get_k(self, cur_iter):
ratio = min(cur_iter // (self.max_iters // 10), 9) / 9
k = self.k_init + ratio * (self.k_safe - self.k_init)
return k
class Table(object):
def __init__(self, filename):
'''
create a table to record experiment results that can be opened by excel
:param filename: using '.csv' as postfix
'''
assert '.csv' in filename
self.filename = filename
@staticmethod
def merge_headers(header1, header2):
# return list(set(header1 + header2))
if len(header1) > len(header2):
return header1
else:
return header2
def write(self, ordered_dict):
'''
write an entry
:param ordered_dict: something like {'name':'exp1', 'acc':90.5, 'epoch':50}
:return:
'''
if os.path.exists(self.filename) == False:
headers = list(ordered_dict.keys())
prev_rec = None
else:
with open(self.filename) as f:
reader = csv.DictReader(f)
headers = reader.fieldnames
prev_rec = [row for row in reader]
headers = self.merge_headers(headers, list(ordered_dict.keys()))
with open(self.filename, 'w', newline='') as f:
writer = csv.DictWriter(f, headers)
writer.writeheader()
if not prev_rec == None:
writer.writerows(prev_rec)
writer.writerow(ordered_dict)
class WorklogLogger:
def __init__(self, log_file):
logging.basicConfig(filename=log_file,
level=logging.DEBUG,
format='%(asctime)s - %(threadName)s - %(levelname)s - %(message)s')
self.logger = logging.getLogger()
def put_line(self, line):
self.logger.info(line)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name):
self.name = name
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def save_args(args, save_dir):
param_path = os.path.join(save_dir, 'params.json')
with open(param_path, 'w') as fp:
json.dump(args.__dict__, fp, indent=4, sort_keys=True)
def ensure_dir(path):
"""
create path by first checking its existence,
:param paths: path
:return:
"""
if not os.path.exists(path):
os.makedirs(path)
print(f'\nMaking directory: {path}...\n')
def ensure_dirs(paths):
"""
create paths by first checking their existence
:param paths: list of path
:return:
"""
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
ensure_dir(path)
else:
ensure_dir(paths)
def remkdir(path):
"""
if dir exists, remove it and create a new one
:param path:
:return:
"""
if os.path.exists(path):
shutil.rmtree(path)
os.makedirs(path)
def cycle(iterable):
while True:
for x in iterable:
yield x
def requires_grad(xs, req=False):
if not (isinstance(xs, tuple) or isinstance(xs, list)):
xs = tuple(xs)
for x in xs:
x.requires_grad_(req)
def dict_get(dict, key, default, default_device='cuda'):
v = dict.get(key)
default_tensor = torch.tensor([default]).float().to(default_device)
if v is None or v.nelement() == 0:
return default_tensor
else:
return v
def acc(x, thres):
return (x <= thres).sum() / len(x)