-
Notifications
You must be signed in to change notification settings - Fork 7
/
main_finetune2.py
512 lines (445 loc) · 22.9 KB
/
main_finetune2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import argparse
import datetime
import json
import numpy as np
import os
import time
import timm.optim.optim_factory as optim_factory
from pathlib import Path
import torch.utils
import torch.utils.data
from loss.loss import WeightedMSE
import torch
import torch.backends.cudnn as cudnn
try:
from tensorboardX import SummaryWriter
except:
from torch.utils.tensorboard import SummaryWriter
import timm
assert timm.__version__ == "0.3.2" # version check
from timm.models.layers import trunc_normal_
from timm.data.mixup import Mixup
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
import util_mamba.lr_decay as lrd
import util_mamba.misc as misc
from util_mamba.datasets import build_dataset
from util_mamba.pos_embed import interpolate_pos_embed
from util_mamba.misc import NativeScalerWithGradNormCount as NativeScaler
from data_provider_labeled import Train as Trainset
import yaml
from attrdict import AttrDict
from utils.show import show_one
from utils.shift_channels import shift_func
from segmamba import SegMamba
from segmamba_variant import SegMamba_linear
from segmamba_deep import SegMamba_deep
# from segmamba_ar import SegMamba
# from SwinUMamba import SwinUMamba
from engine_finetune2 import train_one_epoch, evaluate
from model_superhuman2 import UNet_PNI
from model_unetr import UNETR
from unet3d_mala import UNet3D_MALA
# from model_unetr2 import UNETR
# from model_unetr2_variant import UNETR
from provider_valid import Provider_valid
def get_args_parser():
parser = argparse.ArgumentParser('MAE fine-tuning for image classification', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='vit_large_patch16', type=str, metavar='MODEL',
help='Name of model to train')
# parser.add_argument('--crop_size', default='', type=lambda s: list(map(int, s.split(','))),
# help='images crop size') # 传入--crop_size=16,160,160
parser.add_argument('--crop_size', default=[16,160,160], type=list,
help='images crop size')
parser.add_argument('--input_size', default=224, type=int,
help='images input size')
parser.add_argument('--pretrain_path', default='', type=str,
help='path to pretrain model')
parser.add_argument('--load_mode', type=str, default="",
help="load mode for pretrain model")
parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--overlap', type=float, default=0.25, metavar='PCT',)
parser.add_argument('--use_monai', type=int, default=1,
help='mode for the model inference: 1 for monai and 0 for non-monai')
# Optimizer parameters
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--layer_decay', type=float, default=0.75,
help='layer-wise lr decay from ELECTRA/BEiT')
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR')
parser.add_argument('--use_lr_scheduler', type=int, default=1,
help='decay the learning rate with half-cycle consine after warmup: 1 for use and 0 for unused')
# Augmentation parameters
parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT',
help='Color jitter factor (enabled only when not using Auto/RandAug)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0,
help='mixup alpha, mixup enabled if > 0.')
parser.add_argument('--cutmix', type=float, default=0,
help='cutmix alpha, cutmix enabled if > 0.')
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup_prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup_switch_prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup_mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# * Finetuning params
parser.add_argument('--finetune', default='',
help='finetune from checkpoint')
parser.add_argument('--global_pool', action='store_true')
parser.set_defaults(global_pool=True)
parser.add_argument('--cls_token', action='store_false', dest='global_pool',
help='Use class token instead of global pool for classification')
# Dataset parameters
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--nb_classes', default=1000, type=int,
help='number of the classification types')
parser.add_argument('--output_dir', default='/h3cstore_ns/hyshi/EM_mamba_new/result/EM_1',
help='path where to save, empty for no saving')
parser.add_argument('--visual_dir', default='/h3cstore_ns/hyshi/EM_mamba_new/result/EM_1/visual',
help='path where to save visual images')
parser.add_argument('--log_dir', default='/h3cstore_ns/hyshi/EM_mamba_new/result/EM_1/tensorboard_log',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.add_argument('--dist_eval', action='store_true', default=False,
help='Enabling distributed evaluation (recommended during training for faster monitor')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--auto_mode', default=0, type=int,
help='mode for autoregress pretraining')
parser.add_argument('--use_amp', default=False, type=bool,
help="mode for training")
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
cfg_file = 'seg_all_3d_ac4_data80'
# cfg_file = 'seg_3d_ac3_data100'
# with open('/data/ydchen/VLP/wafer4/config/' + cfg_file + '.yaml', 'r') as f:
with open('/h3cstore_ns/hyshi/configs/' + cfg_file + '.yaml', 'r') as f:
cfg = AttrDict(yaml.safe_load(f))
# model = nn.data.parralell(model)
if cfg.DATA.shift_channels is not None:
cfg.shift = shift_func(cfg.DATA.shift_channels)
else:
cfg.shift = None
args.crop_size = cfg.MODEL.crop_size
# data_loader_val = torch.utils.data.DataLoader(
# dataset_val, sampler=sampler_val,
# batch_size=args.batch_size,
# num_workers=args.num_workers,
# pin_memory=args.pin_mem,
# drop_last=False
# )
if cfg.MODEL.model_type == 'superhuman':
print("load superhuman model!")
model = UNet_PNI(
in_planes=cfg.MODEL.input_nc,
out_planes=cfg.MODEL.output_nc,
filters=cfg.MODEL.filters,
upsample_mode=cfg.MODEL.upsample_mode,
decode_ratio=cfg.MODEL.decode_ratio,
pad_mode=cfg.MODEL.pad_mode,
bn_mode=cfg.MODEL.bn_mode,
relu_mode=cfg.MODEL.relu_mode,
init_mode=cfg.MODEL.init_mode
)
args.crop_size = cfg.MODEL.superhuman_size
elif cfg.MODEL.model_type == 'unetr':
print("load UNETR model!")
# model = UNETR(
# in_channels=cfg.MODEL.input_nc,
# out_channels=cfg.MODEL.output_nc,
# img_size=cfg.MODEL.unetr_size,
# patch_size=cfg.MODEL.patch_size,
# feature_size=[16, 32, 64, 128],
# hidden_size=512,
# mlp_dim=2048,
# num_heads=8,
# pos_embed='perceptron',
# norm_name='instance',
# conv_block=True,
# res_block=True,
# kernel_size=cfg.MODEL.kernel_size,
# skip_connection=False,
# show_feature=False,
# dropout_rate=0.1)
model = UNETR(
in_channels=cfg.MODEL.input_nc,
out_channels=cfg.MODEL.output_nc,
img_size=cfg.MODEL.unetr_size,
patch_size=cfg.MODEL.patch_size,
feature_size=16,
hidden_size=768,
mlp_dim=2048,
num_heads=8,
pos_embed='perceptron',
norm_name='instance',
conv_block=True,
res_block=True,
kernel_size=cfg.MODEL.kernel_size,
skip_connection=False,
show_feature=False,
dropout_rate=0.1) #model_unetr.py的UNETR
args.crop_size = cfg.MODEL.unetr_size
elif cfg.MODEL.model_type == 'segmamba':
print("load segmamba model!")
model = SegMamba(in_chans=1,
out_chans=3,
# kernel_size=(1,3,3),
# args=args
)
args.crop_size = cfg.MODEL.crop_size
elif cfg.MODEL.model_type == 'segmamba_linear':
print("load segmamba_linear model!")
model = SegMamba_linear(in_chans=1, out_chans=3)
args.crop_size = cfg.MODEL.unetr_size
elif cfg.MODEL.model_type == 'segmamba_deep':
print("load segmamba_depp model!")
model = SegMamba_deep(
in_chans=1,
out_chans=3,
)
args.crop_size = cfg.MODEL.unetr_size
elif cfg.MODEL.model_type == 'mala':
print("load mala model!")
model = UNet3D_MALA(output_nc=cfg.MODEL.output_nc,
if_sigmoid=cfg.MODEL.if_sigmoid,
init_mode=cfg.MODEL.init_mode_mala)
args.crop_size = cfg.MODEL.mala_size
if args.pretrain_path:
checkpoint = torch.load(args.pretrain_path, map_location='cpu')
for k in list(checkpoint['model'].keys()):
if k.startswith('module.'):
checkpoint['model'][k[7:]] = checkpoint['model'].pop(k)
if k in model.state_dict() and checkpoint['model'][k].shape != model.state_dict()[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint['model'][k]
if args.load_mode:
if args.load_mode == "vit":
selected_weights = {k: v for k, v in checkpoint['model'].items() if k.startswith('vit')}
model.load_state_dict(selected_weights, strict=False)
print("Load pre-trained vit" )
elif args.load_mode == "enc":
selected_weights = {k: v for k, v in checkpoint['model'].items() if k.startswith('encoder')}
model.load_state_dict(selected_weights, strict=False)
print("Load pre-trained encoder" )
elif args.load_mode == "dec":
selected_weights = {k: v for k, v in checkpoint['model'].items() if k.startswith('decoder')}
model.load_state_dict(selected_weights, strict=False)
print("Load pre-trained decoder" )
elif args.load_mode == "vit_enc":
selected_weights = {k: v for k, v in checkpoint['model'].items() if k.startswith('vit') or k.startswith('encoder')}
model.load_state_dict(selected_weights, strict=False)
print("Load pre-trained vit and encoder" )
else:
model.load_state_dict(checkpoint['model'], strict=False)
print("Load pre-trained checkpoint from: %s" % args.pretrain_path)
# if args.finetune and not args.eval:
# checkpoint = torch.load(args.finetune, map_location='cpu')
# print("Load pre-trained checkpoint from: %s" % args.finetune)
# checkpoint_model = checkpoint['model']
# state_dict = model.state_dict()
# for k in ['head.weight', 'head.bias']:
# if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
# print(f"Removing key {k} from pretrained checkpoint")
# del checkpoint_model[k]
# # interpolate position embedding
# interpolate_pos_embed(model, checkpoint_model)
# # load pre-trained model
# msg = model.load_state_dict(checkpoint_model, strict=False)
# print(msg)
# if args.global_pool:
# assert set(msg.missing_keys) == {'head.weight', 'head.bias', 'fc_norm.weight', 'fc_norm.bias'}
# else:
# assert set(msg.missing_keys) == {'head.weight', 'head.bias'}
# # manually initialize fc layer
# trunc_normal_(model.head.weight, std=2e-5)
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params (M): %.2f' % (n_parameters / 1.e6))
dataset_train = Trainset(cfg, args.crop_size) # [16,256,256] [16,160,160] [32,320,320]
if True: # args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
# if args.dist_eval:
# if len(dataset_val) % num_tasks != 0:
# print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
# 'This will slightly alter validation results as extra duplicate entries are added to achieve '
# 'equal num of samples per-process.')
# sampler_val = torch.utils.data.DistributedSampler(
# dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True) # shuffle=True to reduce monitor bias
# else:
# sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if global_rank == 0 and args.log_dir is not None and not args.eval:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
if bool(args.use_monai) is not True:
valid_provider = Provider_valid(cfg, test_split=cfg.DATA.test_split)
# val_loader = torch.utils.data.DataLoader(valid_provider, batch_size=1)
else:
valid_provider = None
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
if cfg.MODEL.model_type == 'unetr' or cfg.MODEL.model_type == 'segmamba_linear':
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
else:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
loss_scaler = NativeScaler()
# if mixup_fn is not None:
# # smoothing is handled with mixup label transform
# criterion = SoftTargetCrossEntropy()
# elif args.smoothing > 0.:
# criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
# else:
# criterion = torch.nn.CrossEntropyLoss()
criterion = WeightedMSE()
print("criterion = %s" % str(criterion))
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
# for key in model.state_dict():
# print(key)
# if args.eval:
# test_stats = evaluate(data_loader_val, model, device)
# print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
# exit(0)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad,
log_writer=log_writer,
args=args,
dataset = dataset_train,
visual_dir = args.visual_dir,
val_provider = valid_provider, # 20240408
cfg=cfg,
)
if args.output_dir and (epoch % 10 == 0 or epoch == args.epochs - 1) and misc.is_main_process():
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
# test_stats = evaluate(data_loader_val, model, device)
# print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
# max_accuracy = max(max_accuracy, test_stats["acc1"])
# print(f'Max accuracy: {max_accuracy:.2f}%')
# if log_writer is not None:
# log_writer.add_scalar('perf/test_acc1', test_stats['acc1'], epoch)
# log_writer.add_scalar('perf/test_acc5', test_stats['acc5'], epoch)
# log_writer.add_scalar('perf/test_loss', test_stats['loss'], epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
# **{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
Path(args.visual_dir).mkdir(parents=True, exist_ok=True)
main(args)