-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjson_read.py
247 lines (208 loc) · 9.09 KB
/
json_read.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import sys
import re
import string
import json
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import torch.distributions as D
import numpy as np
import pandas as pd
import subprocess
import itertools
import base64
#TO make the heading about the location(places)_JS
def make_heading_loc(file_set,loc_to_idx,loc_list):
list = {}
loc_heading = 0
viewpoint_loc = []
loc_info = {}
heading_idx=[]
for i in range(0,len(file_set)):
append_loc = []
with open(file_set[i]) as json_file:
data = json.load(json_file)
viewpoint_id = data['viewpoint_id']
# Make the heading list based on skybox num
# panorama images: skybox1,skybox2, skybox3, skybox4
if data['skybox']=='skybox1':
heading_idx = [1,2,3]
elif data['skybox']=='skybox2':
heading_idx = [4,5,6]
elif data['skybox']=='skybox3':
heading_idx = [7,8,9]
else: #data['skybox']=='skybox4'
heading_idx = [10,11,12]
#print('data', data)
for i in range(0, 1):
if float(data['location_detection'][i]['probability']) >= 0.01:
loc_name = data['location_detection'][i]['location']
loc_prob = data['location_detection'][i]['probability']
if loc_name not in loc_list:
loc_name = 'None'
loc_prob = 0.0
#loc_heading = 0
for heading in heading_idx:
loc = (loc_to_idx[loc_name], heading, loc_prob)
append_loc.append(loc)# THIS SILHUM PILYO
list[data['skybox']] = append_loc
else:
for heading in heading_idx:
loc = (loc_to_idx['None'], heading, 0.0)
append_loc.append(loc)
list[data['skybox']] = append_loc
viewpoint_loc = list['skybox1'] + list['skybox2'] + list['skybox3'] + list['skybox4']
loc_info[viewpoint_id] = viewpoint_loc
#print ('loc_info',loc_info[viewpoint_id])
#arr = np.array(loc_info)
arr = np.array(viewpoint_loc)# numpy.ndarray
return arr
# To Make the heading about the objects_JS
def make_heading_obj(file_set,obj_to_idx,obj_list):
heading_idx = []
list = {}
obj_heading = 0
viewpoint_obj =[] #for add each skybox info(1+2+3+4)
obj_info = {} #It will contain all 4(skybox 1,2,3,4) objects
for i in range(0,len(file_set)):#len(file_set)
append_obj = []
# Open the data(Input: i-th json file path)
with open(file_set[i]) as json_file:
data = json.load(json_file)
viewpoint_id = data['viewpoint_id']
# Make the heading list based on skybox number
# Panorama images : skybox1, skybox2, skybox3, skybox4
if data['skybox']=='skybox1':
heading_idx = [1,2,3]
elif data['skybox']=='skybox2':
heading_idx = [4,5,6]
elif data['skybox']=='skybox3':
heading_idx = [7,8,9]
else: #data['skybox']=='skybox4'
heading_idx = [10,11,12]
for i in range(0,len(data['object_list'])):
if data['object_list'][i]['x'] > 0 and data['object_list'][i]['x'] <= 341:
obj_heading = heading_idx[0]
elif data['object_list'][i]['x'] > 342 and data['object_list'][i]['x'] <= 682:
obj_heading = heading_idx[1]
elif data['object_list'][i]['x'] > 683 and data['object_list'][i]['x'] <= 1024:
obj_heading = heading_idx[2]
obj_name=data['object_list'][i]['object_name']
obj_prob=data['object_list'][i]['probability']
if obj_name not in obj_list:
if i > 0 and (0,0,0.0) in list[data['skybox']]:
continue
else:
obj_name = 'None'
obj_heading = 0
obj_prob = 0.0
obj = (obj_to_idx[obj_name], obj_heading, obj_prob)
append_obj.append(obj)
list[data['skybox']]=append_obj
#print('object_id :', data['object_list'][i]['object_id'])
#print('object_name:', data['object_list'][i]['object_name'])
#print('object_probability:', data['object_list'][i]['probability'])
#print('object_x:', data['object_list'][i]['x'])#image size : 1024 * 4 = 4096 [0:341][342:682][683:1024]
# obj_info.append(zip(data['object_list'][i]['object_id'],obj_loc_idx))
if i > 0 and (0, 0) in list[data['skybox']]:
continue
else:
obj = (obj_to_idx['None'], 0, 0.0)
append_obj.append(obj)
list[data['skybox']]=append_obj
viewpoint_obj = list['skybox1']+list['skybox2']+list['skybox3']+list['skybox4']
obj_info[viewpoint_id] = viewpoint_obj
#arr = np.array(obj_info)
arr = np.array(viewpoint_obj)
return arr
def search_file(path,viewpointId):
result=[]
nonfile_list =[]#skybox0, skybox5
nonused_skybox = ['skybox1','skybox2','skybox3','skybox4']
for root, dirs, files in os.walk(path):
rootpath = os.path.join(os.path.abspath(path), root)
for file in files:
if os.path.splitext(file)[1].lower() == '.json':
filepath = os.path.join(rootpath, file)
for skybox in nonused_skybox:#1,2,3,4 for
if viewpointId in filepath:
if skybox in filepath:
result.append(filepath)
#print('result',result)
return result
def make_obj_idx():
obj_list_file = open('/media/ai8503/f4837b59-5cdd-4faa-955b-befb9a99e668/JS/jisu_selfmonitoring-agent/selfmonitoring-agent/tasks/R2R-pano/objects.txt', 'r')
obj_list = []
obj_to_idx = {}
while True:
line = obj_list_file.readline()
line = line[:-1]
if not line: break
obj_list.append(line)
obj_list_file.close()
# Make the list of objects and matching these into num_JS # THIS SHOULD BE IN ENV.py
for i, obj_name in enumerate(obj_list):
obj_to_idx[obj_name] = i # None: 0 , pottedplant : 1, ...
#print('obj_to_idx', obj_to_idx)
return (obj_to_idx,obj_list)
def make_loc_idx():
loc_list_file = open('/media/ai8503/f4837b59-5cdd-4faa-955b-befb9a99e668/JS/jisu_selfmonitoring-agent/selfmonitoring-agent/tasks/R2R-pano/places.txt', 'r')
loc_list = []
loc_to_idx = {}
while True:
line = loc_list_file.readline()
line = line[:-1]
if not line: break
loc_list.append(line)
loc_list_file.close()
# Make the list of locations and matching these into num_JS # THIS SHOULD BE IN ENV.py
for i, loc_name in enumerate(loc_list):
loc_to_idx[loc_name] = i# None: 0 ,
#print('loc_to_idx',loc_to_idx)
return (loc_to_idx,loc_list)
#------- Encoding feature -------#
# Encoded feature = (object_heading,object_label)
def encode_object(obj_info,obj_to_idx):
encoded_obj = np.zeros((12,17))#12: Heading, 17: Object labels New Object label : 81
for idx in range(0,len(obj_info)):
object_label = int(obj_info[idx][0])
object_heading = int(obj_info[idx][1])
object_probability = obj_info[idx][2]
#print('object_label',object_label,object_heading,object_probability)
if object_label == 0:
continue
else:
if encoded_obj[object_heading-1][object_label-1] == 0:# if isn't zero : Already Masking
encoded_obj[object_heading-1][object_label-1] = object_probability
return encoded_obj#object_feature
def encode_loc(loc_info,loc_to_idx):
encoded_loc = np.zeros((12, 10)) # 12: Heading, 10: 10
place_feature = np.zeros((36, 10))
for idx in range(0, len(loc_info)):
place_label = int(loc_info[idx][0])
place_heading = int(loc_info[idx][1])
place_probability = loc_info[idx][2]
if place_label == 0:
continue
else:
if encoded_loc[place_heading-1][place_label - 1] == 0: # if isn't zero : Already Masking
encoded_loc[place_heading-1][place_label - 1] = place_probability
return encoded_loc#place_feature
def json_read_main(scanId,viewpointId):
(obj_to_idx, obj_list) = make_obj_idx()
(loc_to_idx, loc_list) = make_loc_idx()
scanId= scanId
viewpointId=viewpointId
obj_data_path=("/media/ai8503/f4837b59-5cdd-4faa-955b-befb9a99e668/JS/jisu_selfmonitoring-agent/selfmonitoring-agent/tasks/R2R-pano/data/objects/%s/"%(scanId))
loc_data_path = ("/media/ai8503/f4837b59-5cdd-4faa-955b-befb9a99e668/JS/jisu_selfmonitoring-agent/selfmonitoring-agent/tasks/R2R-pano/data/location/%s/"%(scanId))
obj_file_set = search_file(obj_data_path,viewpointId)
loc_file_set = search_file(loc_data_path,viewpointId)
obj_info = make_heading_obj(obj_file_set,obj_to_idx,obj_list)
loc_info = make_heading_loc(loc_file_set,loc_to_idx,loc_list)
#----object
obj_encoding = encode_object(obj_info,obj_to_idx)#nparray, (12,17)
#----location
loc_encoding = encode_loc(loc_info,loc_to_idx)#(12,10)
return (obj_encoding, loc_encoding)#return as tuple