Skip to content

Latest commit

 

History

History
294 lines (216 loc) · 12 KB

README.md

File metadata and controls

294 lines (216 loc) · 12 KB

javaz

Set of mini utils, classes, routines and other useful things, all buildable as JAR and available as maven artifacats.

Maven dependencies:

<dependency>
    <groupId>org.javaz</groupId>
    <artifactId>javaz-jdbc</artifactId>
    <version>1.0</version>
    <type>pom</type>
</dependency>

Available artifactIds:

javaz-cache, javaz-jdbc, javaz-queues, javaz-servlet, javaz-uml, javaz-util

Sub Projects:

  • cache - Simple and straightforward implementation of expirable Cache.

  • jdbc - Handy tool to access JDBC/JNDI databases, for replicating data between different DBs

  • queues - Helpers to make some batching/queues, both abstract and implementation part

  • servlet - Servlet, XMLRPC and SSL stuff

  • uml - tools to convert Violet UML editor class diagrams into objects, and render objects to any script files usung freemarker.

  • util - Small useful utils, not belong to any significant project

  • xml - Useful things for xml

Sub Projects cross-dependencies:

  • jdbc/queues - Queues interface implemented using JDBC tools; Threaded generic mass-updater;

Usage examples

Cache

    CacheImpl cache = new CacheImpl();
    cache.setTimeToLive(3600*1000L);
    cache.put("any key, String wold be fine", new Double(7.0));
    Double seven = cache.get("any key, String wold be fine");

That's it. Cache auto cleared during active requests. If you want more aggressive purging - just call something like this in Thread: cache.clearExpired();

JDBC

    String address = "jdbc:hsqldb:hsql://localhost:1600/mydb1;username=SA";
    JdbcHelperI db = JdbcCachedHelper.getInstance(address);

    // When you using pool, or your connections have to be created in some obscure way, you should
    // implement own ConnectionProviderFactory and use it.
    ConnectionProviderFactory ownFactory = ...
    String address2 = "custom-address";
    JdbcHelperI dbCustom = JdbcCachedHelper.getInstance(address2, ownFactory);

    // simple query execution
    db.runUpdate("create table test (id integer, name varchar(250))", null);

    // simple query execution with parameter
    HashMap map = new HashMap();

    // SQL standards - parameters starts from 1
    map.put(1, "No injections ' allowed \" at all'; &quot; --");
    db.runUpdate("insert into test (name) values (?)", map);

    // no cache allowed in this query
    List list = test.getRecordList("select * from test", null, false);

    // cache is used here.
    List list = test.getRecordList("select * from test", null);

    // run mass update in single call - in single transaction/connection
    ArrayList updates = new ArrayList();
    updates.add(new Object[]{"insert into test values (101,'a')", null});
    updates.add(new Object[]{"insert into test values (102,'b')", null});
    updates.add(new Object[]{"insert into test values (103,'c')", null});

    db.runMassUpdate(updates);

    // Asynchronous queries
    // For example, you in one thread very efficiently finding what should be updated.
    // To make updates happen in separate Thread, is such simple as:

    GenericDbUpdater dbUpdater =
        GenericDbUpdater.getInstance("update test set name='x' where id", address);
    dbUpdater.addToQueueAll(millionIdsCollection);
    // And updates will go Batched by GenericDbUpdater.MAX_OBJECTS_PER_UPDATE and in separate Thread.



    // POC util
    ReplicateTables replicator = new ReplicateTables();
    // initial values
    replicator.dbFrom = address;
    replicator.dbTo = address2;
    replicator.dbToType = "hsqldb";
    HashMap<String, String> tableInfo = new HashMap<String, String>();
    tableInfo.put("name", "test5");
    tableInfo.put("name2", "test6");
    tableInfo.put("where1", " AND id > 0 ");
    tableInfo.put("where2", " AND id > 0 ");
    replicator.tables.add(tableInfo);

    // Here will happen magic - all data from dbFrom.test5 table will go to dbTo.test6
    // From and To any JDBC-compliant Database URLs.
    // Conditions of success - meta data and sizes of columns should match (pretty obvious)
    replicator.runReplicate();
  • why caching some results? There happens heavy queries with relatively slow changing data;

When you read some rows into memory, objects will stay there until GC, right? So, storing them actually not bad idea, at least for some short time.

Queue

    // You have very large table (~millions of records), or other datasource;
    // and you need get records from there by some condition;
    // For example to make update of expired data.
    // Synchronous select is bad, since any significant client traffic will kill your DB
    // To avoid this, there are RecordsRotaterI, which get records from underlying
    // RecordsFetcherI in separate thread, by reasonable chunks.

    SqlRecordsFetcher fetcher = new SqlRecordsFetcher(address,
            "idx, name", // which columns are returned as DATA
            "test4", // from clause, can contains tables, left joins, etc
            "idx > 0"); // condition

    //If your PK not called "id"
    fetcher.setIdColumn("idx");
    //How each records data will be returned, in Maps or ArrayList
    fetcher.setSelectType(JdbcConstants.ACTION_MAP_RESULTS_SET);

    //get and launch in background Thread rotator itself
    RecordsRotatorI rotater = RotatorsHolder.getRotater(fetcher);

    // if data is read, then here will be some results.
    // No matter how many clients called this method, load will be low
    // Since querying ready objects pool are separated from part which fills it from DB (Or any
    // other source - RPC, WS)
    Collection elements = rotater.getManyElements(1000);

    // If you implementing accepter of data, it's nice to have it asynchronous too.
    // For example, some clients are pushing to your server data, and load is different in time.
    // That's simple:

    // Create and launch Sender:
    sender = new SimplePartialSender(yourFeederDataSaver);
    //Any size
    sender.setChunkSize(25);
    //If your logic allows - wait some time to push more data
    sender.setWaitDtelayForMinimalSize(1000);

    // When data came, just puch it like this:
    sender.addToQueueAll(manyObjects);

    //That's it. When sender will be ready, it will call your implemented method in FeedI:
    // yourFeederDataSaver.sendData(Collection nextChunkOfRecords) throws Exception;

Uml

    // VioletParser used to parse beans from violet file or from json
    HashMap fromViolet = new VioletParser().parseVioletClass("path");

    // VioletParser used to parse beans from violet file or from json
    HashMap fromJson = new VioletParser().parseFromJson("path");

    // Can be used from commandline
    java -cp ${jar} org.javaz.uml.VioletParser in.class.violet out-ver${ver}.json

    // RenderFtl used to take beans (or each bean) and render some templates
    RenderFtl renderFtl = new RenderFtl(oldModel, newModel);
    renderFtl.setParseType(RENDER_DIFFERENCE);
    renderFtl.setTemplate("update-db");

    // This can be used from command-line
    // This takes model from file model7.json and renders template create-mysql.ftl
    java -cp ${jar} org.javaz.uml.RenderFtl model7.json create-mysql 1 -DtemplatePath=/path/tpl

Util

    // return time in such format YYYYDDDPP
    // where YYYY - year
    // DDD - day in year
    // PP - percents of time; e.g. 12:00 = 50; 18:00 = 75
    Integer day = DayUtil.getIntegerTime();

    // @return day from beginning of 2011 Year
    //         It's NOT the same as ((extract(year from NOW()) - 2011)*365 +
    //         extract(doy from NOW())) in database;
    // As leap years and DST counting.
    Integer daysFrom2011 = DayUtil.getDayShort();

    String toBrowser = JsonUtil.convertToJS(anyHashMapOrArrayOrAnything);

    filePropertyUtil = UpdateableFilePropertyUtil.getInstance(file);
    //get property from file;
    String original = filePropertyUtil.getProperty(key);
    // imagine that file is somehow changed;

    //get property from file;
    String updated = filePropertyUtil.getProperty(key);

    // Comparators - dynamic comparators, which can treat any Collections, elements can be any
    // level of complexity and any level of nesting

    // Create comparator which will sort Collection of Map, by getting from each map value
    // by key "a", splitting this value by "\t" and comparing second part of split, treating
    // it as Long.
    GenericDeepComparator deepComparator = new GenericDeepComparator();
    MapValueProducer producer1 = new MapValueProducer("a");
    SplitStringProducer nested1 = new SplitStringProducer("\t", 1);
    nested1.setNested(new LongFromStringProducer());
    producer1.setNested(nested1);
    deepComparator.setProducerI(producer1);

    // Create comparator which will sort Collection of Map by getting from each map value
    // by key "a"
    GenericDeepComparator deepComparator = new GenericDeepComparator();
    MapValueProducer producer1 = new MapValueProducer("a");
    deepComparator.setProducerI(producer1);

    // ObjectDifference used to find difference between objects.
    // Mostly useful to make difference between Map(s)
    HashMap inANotInB = ObjectDifference.getInANotInB(a, b);
    HashMap inAAndInBEquals = ObjectDifference.getInAAndInBEquals(a, b);
    HashMap inAAndInBNotEquals = ObjectDifference.getInAAndInBNotEquals(a, b);

XML

    // If you are dealing with different XML and they are big to be processed via DOM,
    // you end up with SAX.
    // XpathSaxHandler could transform XML into set of HashMaps/ArrayLists/Strings the way you
    // specify by simple rules.
    XpathSaxHandler dh = new XpathSaxHandler();

    // Specify what objects you want to treat as highest level objects
    dh.addHashToHashFillingRule("tag1", XpathSaxHandler.RESULTS);

    // Specify other objects you need to parse, and where this objects will be put,
    // in this case all node2 objects will be put into their parent Map tag1, into
    // property "key1", tag1.get("key1") == ArrayList
    dh.addHashToHashFillingRule("node2", "tag1@key1,list");

    // node3 which should be nested into Node2 structure put in both tag1 & tag2.
    dh.addHashToHashFillingRule("node3", "tag2@n3,list");
    dh.addHashToHashFillingRule("node3", "tag1@alln3,list");

    // Okey, now let's tell parser where to create new Objects
    dh.addNewObjectRule("/start", "tag1");
    dh.addNewObjectRule("/start/some/node2", "node2");
    dh.addNewObjectRule("/start/some/node2/deeper/deeper", "node3");

    // And let's specify which attributes we actually need to be extracted:

    // You see that we extract id for tag1 not from /start/, but from any child tree attribute
    dh.addObjectFillingRule("/start/some@id", "tag1@id");

    // Extract id for node2
    dh.addObjectFillingRule("/start/some/node2@id", "node2@id");
    // Extract all requred texts and put them into ArrayList into node2
    dh.addObjectFillingRule("/start/some/node2/desc@text", "node2@alltextes,list");

    // As for node3, we interested only in one attribute.
    dh.addObjectFillingRule("/start/some/node2/deeper/deeper@refid", "node3@id");

    // And, we need extract text content from tag 'text' into ArrayList of texts.
    // Note that even empty Strings are proceeded.
    dh.addObjectFillingRule("/start/some/node2/deeper/deeper/text", "node3@texts,list");

    // Parse magic
    parser.parse(inputStream, dh);

    // And at last, get our data.
    ArrayList objects = dh.getResults();