-
Notifications
You must be signed in to change notification settings - Fork 15
/
main.py
268 lines (232 loc) · 14.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import argparse
import os
import torch
import random
import numpy as np
import uuid
import datetime
import importlib
import wandb
#from exp.exp_online import Exp_TS2VecSupervised
def init_dl_program(
device_name,
seed=None,
use_cudnn=True,
deterministic=False,
benchmark=False,
use_tf32=False,
max_threads=None
):
import torch
if max_threads is not None:
torch.set_num_threads(max_threads) # intraop
if torch.get_num_interop_threads() != max_threads:
torch.set_num_interop_threads(max_threads) # interop
try:
import mkl
except:
pass
else:
mkl.set_num_threads(max_threads)
if seed is not None:
random.seed(seed)
seed += 1
np.random.seed(seed)
seed += 1
torch.manual_seed(seed)
if isinstance(device_name, (str, int)):
device_name = [device_name]
devices = []
for t in reversed(device_name):
t_device = torch.device(t)
devices.append(t_device)
if t_device.type == 'cuda':
assert torch.cuda.is_available()
torch.cuda.set_device(t_device)
if seed is not None:
seed += 1
torch.cuda.manual_seed(seed)
devices.reverse()
torch.backends.cudnn.enabled = use_cudnn
torch.backends.cudnn.deterministic = deterministic
torch.backends.cudnn.benchmark = benchmark
if hasattr(torch.backends.cudnn, 'allow_tf32'):
torch.backends.cudnn.allow_tf32 = use_tf32
torch.backends.cuda.matmul.allow_tf32 = use_tf32
return devices if len(devices) > 1 else devices[0]
parser = argparse.ArgumentParser(description='[Informer] Long Sequences Forecasting')
parser.add_argument('--data', type=str, default='ETTh2', help='data')
parser.add_argument('--root_path', type=str, default='./data/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh2.csv', help='data file')
parser.add_argument('--features', type=str, default='M', help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h', help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length of Informer encoder')
parser.add_argument('--label_len', type=int, default=0, help='start token length of Informer decoder')
parser.add_argument('--pred_len', type=int, default=1, help='prediction sequence length')
# Informer decoder input: concat[start token series(label_len), zero padding series(pred_len)]
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=32, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2 , help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--s_layers', type=str, default='3,2,1', help='num of stack encoder layers')
parser.add_argument('--d_ff', type=int, default=128, help='dimension of fcn')
parser.add_argument('--factor', type=int, default=5, help='probsparse attn factor')
parser.add_argument('--padding', type=int, default=0, help='padding type')
parser.add_argument('--distil', action='store_false', help='whether to use distilling in encoder, using this argument means not using distilling', default=True)
parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
parser.add_argument('--attn', type=str, default='prob', help='attention used in encoder, options:[prob, full]')
parser.add_argument('--embed', type=str, default='timeF', help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu',help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')
parser.add_argument('--mix', action='store_false', help='use mix attention in generative decoder', default=True)
parser.add_argument('--cols', type=str, nargs='+', help='certain cols from the data files as the input features')
parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers')
parser.add_argument('--itr', type=int, default=2, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=3, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.003, help='optimizer learning rate')
parser.add_argument('--learning_rate_w', type=float, default=0.001, help='optimizer learning rate')
parser.add_argument('--learning_rate_bias', type=float, default=0.001, help='optimizer learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-3, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test',help='exp description')
parser.add_argument('--loss', type=str, default='mse',help='loss function')
parser.add_argument('--lradj', type=str, default='type1',help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
parser.add_argument('--inverse', action='store_true', help='inverse output data', default=False)
parser.add_argument('--method', type=str, default='onenet_fsnet')
# PatchTST
parser.add_argument('--fc_dropout', type=float, default=0.05, help='fully connected dropout')
parser.add_argument('--head_dropout', type=float, default=0.0, help='head dropout')
parser.add_argument('--patch_len', type=int, default=16, help='patch length')
parser.add_argument('--stride', type=int, default=8, help='stride')
parser.add_argument('--padding_patch', default='end', help='None: None; end: padding on the end')
parser.add_argument('--revin', type=int, default=0, help='RevIN; True 1 False 0')
parser.add_argument('--affine', type=int, default=0, help='RevIN-affine; True 1 False 0')
parser.add_argument('--subtract_last', type=int, default=0, help='0: subtract mean; 1: subtract last')
parser.add_argument('--decomposition', type=int, default=0, help='decomposition; True 1 False 0')
parser.add_argument('--kernel_size', type=int, default=25, help='decomposition-kernel')
parser.add_argument('--tcn_output_dim', type=int, default=320, help='decomposition-kernel')
parser.add_argument('--tcn_layer', type=int, default=2, help='decomposition-kernel')
parser.add_argument('--tcn_hidden', type=int, default=160, help='decomposition-kernel')
parser.add_argument('--individual', type=int, default=1, help='individual head; True 1 False 0')
parser.add_argument('--teacher_forcing', action='store_true', help='use teacher forcing during forecasting', default=False)
parser.add_argument('--online_learning', type=str, default='full')
parser.add_argument('--opt', type=str, default='adam')
parser.add_argument('--test_bsz', type=int, default=1)
parser.add_argument('--n_inner', type=int, default=1)
parser.add_argument('--channel_cross', type=bool, default=False)
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3',help='device ids of multile gpus')
parser.add_argument('--finetune', action='store_true', default=False)
parser.add_argument('--finetune_model_seed', type=int)
parser.add_argument('--aug', type=int, default=0, help='Training with augmentation data aug iterations')
parser.add_argument('--lr_test', type=float, default=1e-3, help='learning rate during test')
# supplementary config for FEDformer model
parser.add_argument('--version', type=str, default='Wavelets',
help='for FEDformer, there are two versions to choose, options: [Fourier, Wavelets]')
parser.add_argument('--mode_select', type=str, default='random',
help='for FEDformer, there are two mode selection method, options: [random, low]')
parser.add_argument('--modes', type=int, default=64, help='modes to be selected random 64')
parser.add_argument('--L', type=int, default=3, help='ignore level')
parser.add_argument('--base', type=str, default='legendre', help='mwt base')
parser.add_argument('--cross_activation', type=str, default='tanh',
help='mwt cross atention activation function tanh or softmax')
parser.add_argument('--moving_avg', default=[24], help='window size of moving average')
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--m', type=int, default=24)
parser.add_argument('--loss_aug', type=float, default=0.5, help='weight for augmentation loss')
parser.add_argument('--use_adbfgs', action='store_true', help='use the Adbfgs optimizer', default=True)
parser.add_argument('--period_len', type=int, default=12)
parser.add_argument('--mlp_depth', type=int, default=3)
parser.add_argument('--mlp_width', type=int, default=256)
parser.add_argument('--station_lr', type=float, default=0.0001)
parser.add_argument('--sleep_interval', type=int, default=1, help='latent dimension of koopman embedding')
parser.add_argument('--sleep_epochs', type=int, default=1, help='latent dimension of koopman embedding')
parser.add_argument('--sleep_kl_pre', type=float, default=0, help='latent dimension of koopman embedding')
parser.add_argument('--delay_fb', action='store_true', default=False, help='use delayed feedback')
parser.add_argument('--online_adjust', type=float, default=0.0, help='latent dimension of koopman embedding')
parser.add_argument('--offline_adjust', type=float, default=0.0, help='latent dimension of koopman embedding')
parser.add_argument('--online_adjust_var', type=float, default=0.0, help='latent dimension of koopman embedding')
parser.add_argument('--var_weight', type=float, default=0.0, help='latent dimension of koopman embedding')
parser.add_argument('--alpha_w', type=float, default=0.0001, help='spectrum filter ratio')
parser.add_argument('--alpha_d', type=float, default=0.003, help='spectrum filter ratio')
parser.add_argument('--test_lr', type=float, default=0.1, help='spectrum filter ratio')
args = parser.parse_args()
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
args.test_bsz = args.batch_size if args.test_bsz == -1 else args.test_bsz
if args.use_gpu and args.use_multi_gpu:
args.devices = args.devices.replace(' ','')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
data_parser = {
'ETTh1':{'data':'ETTh1.csv','T':'OT','M':[7,7,7],'S':[1,1,1],'MS':[7,7,1]},
'ETTh2':{'data':'ETTh2.csv','T':'OT','M':[7,7,7],'S':[1,1,1],'MS':[7,7,1]},
'ETTm1':{'data':'ETTm1.csv','T':'OT','M':[7,7,7],'S':[1,1,1],'MS':[7,7,1]},
'ETTm2':{'data':'ETTm2.csv','T':'OT','M':[7,7,7],'S':[1,1,1],'MS':[7,7,1]},
'WTH':{'data':'WTH.csv','T':'WetBulbCelsius','M':[12,12,12],'S':[1,1,1],'MS':[12,12,1]},
'ECL':{'data':'ECL.csv','T':'MT_320','M':[321,321,321],'S':[1,1,1],'MS':[321,321,1]},
'Solar':{'data':'solar_AL.csv','T':'POWER_136','M':[137,137,137],'S':[1,1,1],'MS':[137,137,1]},
'Toy': {'data': 'Toy.csv', 'T':'Value', 'S':[1,1,1]},
'ToyG': {'data': 'ToyG.csv', 'T':'Value', 'S':[1,1,1]},
'Exchange': {'data': 'exchange_rate.csv', 'T':'OT', 'M':[8,8,8]},
'Illness': {'data': 'national_illness.csv', 'T':'OT', 'M':[7,7,7]},
'Traffic': {'data': 'traffic.csv', 'T':'OT', 'M':[862,862,862]},
}
if args.data in data_parser.keys():
data_info = data_parser[args.data]
args.data_path = data_info['data']
args.target = data_info['T']
args.enc_in, args.dec_in, args.c_out = data_info[args.features]
args.s_layers = [int(s_l) for s_l in args.s_layers.replace(' ','').split(',')]
args.detail_freq = args.freq
args.freq = args.freq[-1:]
print('Args in experiment:')
print(args)
#Exp = Exp_TS2VecSupervised
Exp = getattr(importlib.import_module('exp.exp_{}'.format(args.method)), 'Exp_TS2VecSupervised')
metrics ,preds, true, mae, mse = [], [], [], [], []
for ii in range(args.itr):
print('\n ====== Run {} ====='.format(ii))
# setting record of experiments
#method_name = 'ts2vec_finetune' if args.finetune else 'ts2vec_supervised'
method_name = args.method
uid = uuid.uuid4().hex[:4]
suffix = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M") + "_" + uid
setting = '{}_{}_pl{}_ol{}_opt{}_tb{}_{}'.format(method_name, args.data, args.pred_len,args.online_learning, args.opt, args.test_bsz, suffix)
init_dl_program(args.gpu, seed=ii)
args.finetune_model_seed = ii
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
print('Total parameters ', sum(p.numel() for p in exp.model.parameters() if p.requires_grad))
# exit()
exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
m, mae_, mse_, p, t = exp.test(setting)
metrics.append(m)
if str(args.data) == 'Traffic':
preds=[0]
true=[0]
else:
preds.append(p)
true.append(t)
mae.append(mae_)
mse.append(mse_)
torch.cuda.empty_cache()
folder_path = './results/' + setting + '/'
if not os.path.exists(folder_path):
os.makedirs(folder_path)
np.save(folder_path + 'metrics.npy', np.array(metrics))
np.save(folder_path + 'preds.npy', np.array(preds))
np.save(folder_path + 'trues.npy', np.array(true))
np.save(folder_path + 'mae.npy', np.array(mae))
np.save(folder_path + 'mse.npy', np.array(mse))