-
AIDTox model
dtox.py
learns and evaluates AIDTox modeldtox_data.py
contains data-formatting functions used for AIDTox model training.dtox_hierarchy.py
contains functions used to process sorted AIDTox hiearchy files and compute model statistics.dtox_nn.py
contains functions used to build basic neural network structure for AIDTox model.dtox_loss.py
contains the the loss function used in AIDTox model.early_stop.py
contains early stop function of AIDTox model.dtox_learning.py
contains deep learning functions used in the AIDTox model construction.run/run_aidtox_implementation.R
generates shell scripts that run AIDTox model (DTox with chemical-gene connections from ComptoxAI) on Tox21 datasets.run/run_dtox_comparison_implementation.R
generates shell scripts that run DTox on Tox21 datasets, which matches the configuration of optimal AIDTox model, for performance comparison.run/run_aidtox_null_implementation.R
generates shell scripts that run AIDTox model on outcome-shuffled Tox21 datasets under Reactome pathway hierarchy.
predict_dtox.py
implements trained AIDTox model to predict outcome probability based on input feature data.interpret_dtox.py
implements layer-wise relevance propagation to evaluate relevance of AIDTox paths.dtox_lrp.py
contains functions used for implementing LRP to evaluate relevance of AIDTox paths.
run/run_interpret_aidtox.R
generates shell scripts that runs interpretation procedure on optimal AIDTox models trained for Tox21 datasets.
-
Simple machine learning model
simple/simple.py
develops and evaluates simple machine learning model (random forest or gradient boosting).simple/simple_learning.py
contains functions for building, evaluating, and implementing simple machine learning models.run/run_simple.R
generates shell scripts that run simple machine learning models on Tox21 datasets under different hyperparameter settings.
-
Model performance analysis
analysis_dtox/collect_model_results.R
collects machine learning model basic info and performance metrics from performance files.analysis_dtox/analyze_dtox_results.py
identifies optimal hyperparameter setting of machine learning method implementation, then compares and visualizes model performance across different method implementations.analysis_dtox/dtox_analysis.py
contains functions used in AIDTox model result anaysis.analysis_dtox/dtox_plot.py
contains functions for visualizing AIDTox model results.
-
AIDTox feature analysis, model performance comparison, and visualization
analysis_aidtox/compare_top_features.py
visualizes the AIDTox model performance derived from different numbers of top predictive gene features, and compares the performance by connection types.analysis_aidtox/compare_model_perf.py
visualizes the comparison of optimal performance between AIDTox and well-established models (DTox, RF, GB) using barplot.analysis_aidtox/visualize_protein_classes.py
uses Radar plots to visualize the class and subclass distribution comparison between AIDTox and DTox target features.analysis_aidtox/analyze_compound_path_map.R
extracts info of compounds and their identified VNN paths from AIDTox interpretation results.analysis_aidtox/visualize_compound_path_map.R
uses Sankey diagram to visualize VNN paths identified for HEK293 cytotoxicity outcome, which connect together compounds, gene features, pathway modules and the outcome.
-
functions.R
contains R functions required for other scripts in the repository.
-
AIDTox model implementation
run/run_aidtox_implementation_compound_gene_comptoxai_tox21.sh
runsrun/run_aidtox_implementation.R
to generaterun/aidtox_compound_gene_comptoxai_tox21/dtox_select_compound_gene_comptoxai_tox21_implementation.sh
.run/aidtox_compound_gene_comptoxai_tox21/dtox_select_compound_gene_comptoxai_tox21_implementation.sh
implementsdtox.py
on compound ComptoxAI connections-Tox21 assay outcome datasets under sorted Reactome pathway hierarchy.run/aidtox_compound_gene_comptoxai_tox21_null/dtox_compound_select_gene_comptoxai_binding_tox21_null.sh
implementsdtox.py
on compound ComptoxAI connections-Tox21 assay outcome datasets under shuffled Reactome pathway hierarchy.
-
AIDTox model interpretation
run/interpret_dtox_compound_select_gene_comptoxai_tox21_implementation.sh
implementsinterpret_dtox.py
on optimal models trained for compound ComptoxAI connections-Tox21 assay outcome datasets.
-
Compared model implementation
run/run_dtox_comparison_implementation_compound_gene_comptoxai_tox21.sh
runsrun/run_dtox_comparison_implementation.R
to generaterun/dtox_comparison_compound_gene_comptoxai_tox21/dtox_compound_select_gene_comptoxai_target_probability_tox21_implementation.sh
.run/dtox_comparison_compound_gene_comptoxai_tox21/dtox_compound_select_gene_comptoxai_target_probability_tox21_implementation.sh
implementsdtox.py
on compound target binding-Tox21 assay outcome datasets under sorted Reactome pathway hierarchy.run/run_simple_compound_structure_tox21_comptoxai.sh
runsrun/run_simple.R
to generaterun/simple_compound_structure_tox21/simple_compound_structure_tox21_select_gene_comptoxai_binding_randomforest.sh
andrun/simple_compound_structure_tox21/simple_compound_structure_tox21_select_gene_comptoxai_binding_xgboost.sh
.run/simple_compound_structure_tox21/simple_compound_structure_tox21_select_gene_comptoxai_binding_randomforest.sh
implementssimple/simple.py
to build random forest models on compound structure-Tox21 assay outcome datasets under different hyperparameter settings.run/simple_compound_structure_tox21/simple_compound_structure_tox21_select_gene_comptoxai_binding_xgboost.sh
implementssimple/simple.py
to build gradient boosting models on compound structure-Tox21 assay outcome datasets under different hyperparameter settings.
-
Model performance analysis, comparison, and visualization
- Result collection
run/collect_model_results_aidtox_compound_gene_comptoxai_tox21.sh
implementsanalysis_dtox/collect_model_results.R
to collect results of AIDTox models built upon compound target binding-Tox21 assay outcome datasets under sorted Reactome pathway hierarchy.run/collect_model_results_dtox_comparison_compound_gene_comptoxai_tox21.sh
implementsanalysis_dtox/collect_model_results.R
to collect results of DTox comparison models built upon compound target binding-Tox21 assay outcome datasets under sorted Reactome pathway hierarchy.run/collect_model_results_simple_compound_structure_tox21.sh
implementsanalysis_dtox/collect_model_results.R
to collect results of simple machine learning models built upon compound structure-Tox21 assay outcome datasets under different hyperparameter settings.
- Result analysis
run/analyze_dtox_results_aidtox_compound_gene_comptoxai_tox21.sh
implementsanalysis_dtox/analyze_dtox_results.py
to identify optimal hyperparameter setting of AIDTox implementation on compound target binding-Tox21 assay outcome datasets under sorted Reactome pathway hierarchy.run/analyze_dtox_results_simple_compound_structure_tox21.sh
implementsanalysis_dtox/analyze_dtox_results.py
to identify optimal hyperparameter setting of simple machine learning model implementation on compound structure-Tox21 assay outcome datasets.
- Result collection