-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
305 lines (247 loc) · 11.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import argparse
import random
import os
import time
import numpy as np
from losses import *
from transforms import *
from model import HGRL
from graph_learner import ATT_learner
from dataset import load_nc_dataset, load_arxiv_year_dataset
from data_utils import load_fixed_splits
from eval_tools import kmeans_test
from eval.logistic_regression_eval import linear_eval
from torch_geometric.utils import to_undirected
import torch
from get_figure import visualize
def seed_it(seed):
random.seed(seed)
os.environ["PYTHONSEED"] = str(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
torch.manual_seed(seed)
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=500)
parser.add_argument('--mm', type=float, default=0.8)
parser.add_argument('--lr', type=float, default=0.005)
parser.add_argument('--lr_gamma', type=float, default=0.005)
parser.add_argument('--weight_decay', type=float, default=0.0005)
parser.add_argument('--hidden_size', type=int, default=512)
parser.add_argument('--output_size', type=int, default=512)
parser.add_argument('--dropout', type=float, default=0.4)
parser.add_argument('--feat_drop', type=float, default=0.2)
parser.add_argument('--edge_drop', type=float, default=0.2)
parser.add_argument('--K', type=int, default=3, help="number of layer in hierarchial_n2n loss")
parser.add_argument('--dataset', type=str, default='cornell')
parser.add_argument('--sub_dataset', type=str, default='')
parser.add_argument('--directed', action='store_true',
help='set to not symmetrize adjacency')
parser.add_argument('--alpha', type=float, default=0.9)
parser.add_argument('--scale', type=float, default=0.01,
help='factor that scales the loss of CCA')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--eval_every', type=int, default=1)
parser.add_argument('--k', type=int, default=8, help="number of neighbors of knn augmentation")
parser.add_argument('-activation_learner', type=str,
default='relu', choices=["relu", "tanh"])
parser.add_argument('--sparse', action='store_true', default=False)
parser.add_argument('--knn_metric', type=str,
default='cosine', choices=['cosine', 'minkowski'])
parser.add_argument('--runs', type=int, default=10)
parser.add_argument('--rand_split', action='store_true',
help='use random splits')
parser.add_argument('--train_prop', type=float, default=0.1,
help='training set proportion')
parser.add_argument('--valid_prop', type=float, default=0.1,
help='validation set proportion')
parser.add_argument('--save_results', action='store_true',
help='save the results')
parser.add_argument('--Init', type=str, default='random',
help='the init method gamma logits')
parser.add_argument('--method', type=str, default='hn2n+CCA')
parser.add_argument('-ta', '--topology_augmentation', type=str, default='learned',
choices=['learned', 'knn', 'init', 'drop'])
parser.add_argument('--task', type=str, default='node_classification',
help='node_cluster/node_classification')
parser.add_argument('--save_figure', action='store_true', default=False)
args = parser.parse_args()
seed_it(args.seed)
print(args)
device = torch.device(
'cuda') if torch.cuda.is_available() else torch.device('cpu')
### Load and preprocess data ###
dataset = load_nc_dataset(args.dataset, args.sub_dataset)
if len(dataset.label.shape) == 1:
dataset.label = dataset.label.unsqueeze(1)
dataset.label = dataset.label.to(device)
# get the splits for all runs
if args.rand_split or args.dataset == 'ogbn-proteins':
print("Using random splits")
split_idx_lst = [dataset.get_idx_split(train_prop=args.train_prop, valid_prop=args.valid_prop)
for _ in range(args.runs)]
else:
print("Using fixed splits")
split_idx_lst = load_fixed_splits(args.dataset, args.sub_dataset)
num_nodes = dataset.graph['num_nodes']
# infer the number of classes for non one-hot and one-hot labels
num_classes = max(dataset.label.max().item() + 1, dataset.label.shape[1])
feat_dimension = dataset.graph['node_feat'].shape[1]
# whether or not to symmetrize
if not args.directed and args.dataset != 'ogbn-proteins':
dataset.graph['edge_index'] = to_undirected(dataset.graph['edge_index'])
dataset.graph['edge_index'], dataset.graph['node_feat'] = \
dataset.graph['edge_index'].to(device), dataset.graph['node_feat'].to(device)
print(f"num nodes {num_nodes} | num classes {num_classes} | num node feats {feat_dimension}")
def train(model, graph_learner, optimizer, data, args):
model.train()
optimizer.zero_grad()
x1, x2 = data.graph['node_feat'], feat_drop(data.graph['node_feat'], p=args.feat_drop)
edge_index = data.graph['edge_index']
knn_edge_index = KNN_graph(data.graph['node_feat'], k=args.k)
drop_edge_index = edge_drop(data.graph['edge_index'], p=args.edge_drop)
learned_adj = graph_learner(data.graph['node_feat'])
learned_edge_index = torch.nonzero(learned_adj).t()
learned_edge_weight = learned_adj[learned_edge_index[0], learned_edge_index[1]]
h1 = model(x1)
h2 = model(x2)
if args.topology_augmentation=='learned':
# learned adj
hs1 = model.prop(
h1, learned_edge_index, learned_edge_weight)
elif args.topology_augmentation=='knn':
# knn adj
hs1 = model.prop(h1, knn_edge_index)
elif args.topology_augmentation=='drop':
# drop adj
hs1 = model.prop(h1, drop_edge_index)
elif args.topology_augmentation=='init':
# init adj
hs1 = model.prop(h1, edge_index)
else:
raise ValueError("Unrecognized augmentation")
alpha = args.alpha
# hn2n+CCA(h1, h2)
loss = alpha*model.hierarchial_n2n(h1, hs1) + (1-alpha)*args.scale*CCA_SSG(h1, h2, beta=0)
print(f"loss: {loss.item()}")
loss.backward()
optimizer.step()
def test(model, data, epoch, args, split_idx=None, task='node_classification'):
model.eval()
with torch.no_grad():
representations = model.get_embedding(
data.graph['node_feat'])
labels = data.label.squeeze(1).cpu().numpy()
print(
f"gamma: {F.softmax(model.logits.detach().cpu(), dim=-1).numpy()}")
print(
f"logits: {model.logits.detach().cpu().numpy()}")
if args.save_figure and epoch % 50 == 0:
visualize(representations, data.label.squeeze(1), args.method, args.dataset, epoch)
if task == 'node_classification':
result = linear_eval(
representations.cpu().numpy(), data.label.squeeze(1).cpu().numpy(), split=split_idx)
print(f"micro_f1: {result['micro_f1']}")
print(f"macro_f1: {result['macro_f1']}")
elif task == 'node_cluster':
result = kmeans_test(representations, dataset.label.squeeze(1), n_clusters=num_classes, repeat=1)
print(f'Epoch: {epoch:02d}, '
f'acc: {100 * result[0]:.2f}%, '
f'nmi: {100 * result[2]:.2f}%, '
f'ari: {100 * result[4]:.2f}%, ')
return result
best_results = []
for run in range(args.runs):
model = HGRL(dataset, args)
graph_learner = ATT_learner(2, isize=feat_dimension, k=args.k, knn_metric=args.knn_metric,
i=6, sparse=args.sparse, mlp_act=args.activation_learner)
model = model.to(device)
graph_learner = graph_learner.to(device)
print(model)
optimizer = torch.optim.Adam([
{
'params': filter(lambda x: x is not model.logits, model.parameters()),
'lr': args.lr,
'weight_decay': args.weight_decay
},
{
'params': [model.logits],
'lr': args.lr_gamma,
'weight_decay': 0.0
},
{
'params': graph_learner.parameters(),
'lr': args.lr,
'weight_decay': args.weight_decay
}
],
lr=args.lr,
weight_decay=args.weight_decay)
split_idx = split_idx_lst[run]
all_results = []
for epoch in range(args.epochs):
start_time = time.time()
train(model, graph_learner, optimizer, dataset, args)
end_time = time.time()
mem_params = sum([param.nelement()*param.element_size() for param in model.parameters()])
print(f"run: {run}, epoch: {epoch}, model memory: {mem_params}, epoch time: {end_time-start_time}")
result = test(model, dataset, epoch, args, split_idx=split_idx, task=args.task)
all_results.append(result)
if args.task == 'node_classification':
best_micro = 0
best_macro = 0
for res in all_results:
if res["micro_f1"] > best_micro:
best_micro = res["micro_f1"]
best_macro = res["macro_f1"]
best_results.append((best_micro, best_macro))
elif args.task == 'node_cluster':
result = torch.tensor(all_results)
best_acc = result[:, 0].max()
best_nmi = result[:, 2].max()
best_ari = result[:, 4].max()
print(f'Highest acc: {100*result[:, 0].max():.2f}')
print(f'Highest nmi: {100*result[:, 2].max():.2f}')
print(f'Highest ari: {100*result[:, 4].max():.2f}')
best_results.append((best_acc, best_nmi, best_ari))
else:
raise ValueError("Unrecognized task")
if args.task == 'node_classification':
best_result = 100*torch.tensor(best_results)
best_test_micro_f1 = best_result[:, 0]
best_test_macro_f1 = best_result[:, 1]
print(f"test micro-f1: {best_test_micro_f1.mean():.3f} ± {best_test_micro_f1.std():.3f}," +
f"test macro-f1: {best_test_macro_f1.mean():.3f} ± {best_test_macro_f1.std():.3f}, " +
f"{args.__repr__()}\n")
elif args.task == 'node_cluster':
best_result = 100*torch.tensor(best_results)
best_acc = best_result[:, 0]
best_nmi = best_result[:, 1]
best_ari = best_result[:, 2]
print(f"acc: {best_acc.mean():.3f} ± {best_acc.std():.3f}," +
f"nmi: {best_nmi.mean():.3f} ± {best_nmi.std():.3f}," +
f"ari: {best_ari.mean():.3f} ± {best_ari.std():.3f}, " +
f"{args.__repr__()}\n")
prefix = './results'
if args.save_results and args.task == 'node_classification':
filename = f'{prefix}/{args.task}/{args.method}-{args.dataset}.txt'
if not os.path.exists(f'{prefix}/{args.task}'):
os.makedirs(f'{prefix}/{args.task}')
print(f"Saving results to {filename}")
with open(f"{filename}", 'a+') as write_obj:
write_obj.write(f"test micro-f1: {best_test_micro_f1.mean():.3f} ± {best_test_micro_f1.std():.3f}," +
f"test macro-f1: {best_test_macro_f1.mean():.3f} ± {best_test_macro_f1.std():.3f}, " +
f"{args.__repr__()}\n")
if args.save_results and args.task == 'node_cluster':
filename = f'{prefix}/{args.task}/{args.method}-{args.dataset}.txt'
if not os.path.exists(f'{prefix}/{args.task}'):
os.makedirs(f'{prefix}/{args.task}')
print(f"Saving results to {filename}")
with open(f"{filename}", 'a+') as write_obj:
write_obj.write(f"acc: {best_acc.mean():.3f} ± {best_acc.std():.3f}," +
f"nmi: {best_nmi.mean():.3f} ± {best_nmi.std():.3f}," +
f"ari: {best_ari.mean():.3f} ± {best_ari.std():.3f}, " +
f"{args.__repr__()}\n")