-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
110 lines (85 loc) · 3.26 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import Parameter
from torch_geometric.nn import MessagePassing
from torch_geometric.nn.conv.gcn_conv import gcn_norm
import numpy as np
class GCN_prop(MessagePassing):
def __init__(self, K, **kwargs):
super().__init__(aggr='add', **kwargs)
self.K = K
def forward(self, x, edge_index, edge_weight=None):
edge_index, norm = gcn_norm(
edge_index, edge_weight, num_nodes=x.size(0), dtype=x.dtype)
reps = []
for k in range(self.K):
x = self.propagate(edge_index, x=x, norm=norm)
reps.append(x)
return reps
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j
def __repr__(self):
return '{}(K={})'.format(self.__class__.__name__, self.K,)
class HGRL(nn.Module):
def __init__(self, dataset, args):
super().__init__()
self.K = args.K
self.dropout = args.dropout
self.hidden_size = args.hidden_size
self.output_size = args.output_size
self.input_size = dataset.graph['node_feat'].shape[1]
# initialize logits
if args.Init=='random':
# random
bound = np.sqrt(3/(self.K))
logits = np.random.uniform(-bound, bound, self.K)
logits = logits/np.sum(np.abs(logits))
self.logits = Parameter(torch.tensor(logits))
print(f"init logits: {logits}")
else:
# fixed
logits = np.array([1, float('-inf'), float('-inf')])
self.logits = torch.tensor(logits)
self.FFN = nn.Sequential(
nn.Dropout(self.dropout),
nn.Linear(self.input_size, self.hidden_size),
nn.ReLU(),
nn.Dropout(self.dropout),
nn.Linear(self.hidden_size, self.output_size)
)
self.prop = GCN_prop(self.K)
def forward(self, x):
return self.FFN(x)
@torch.no_grad()
def get_embedding(self, x):
self.FFN.eval()
return self.FFN(x)
def reset_parameters(self):
torch.nn.init.zeros_(self.logits)
bound = np.sqrt(3/(self.K))
logits = np.random.uniform(-bound, bound, self.K)
logits = logits/np.sum(np.abs(logits))
for k in range(self.K):
self.logits.data[k] = logits[k]
# kaiming_uniform
for m in self.modules():
if isinstance(m, nn.Linear):
m.reset_parameters()
def n2n_loss(self, h1, h2, gamma, temperature=1, bias=1e-8):
# h1: x, h2: n-hop neighbors
z1 = F.normalize(h1, dim=-1, p=2)
z2 = gamma*F.normalize(h2, dim=-1, p=2)
numerator = torch.exp(
torch.sum(z1 * z2, dim=1, keepdims=True) / temperature)
E_1 = torch.matmul(z1, torch.transpose(z1, 1, 0))
denominator = torch.sum(
torch.exp(E_1 / temperature), dim=1, keepdims=True)
return -torch.mean(torch.log(numerator / (denominator + bias) + bias))
def hierarchial_n2n(self, h0, hs):
# h0: x; hs: list of h1, h2 ...hk
loss = torch.tensor(0, dtype=torch.float32).cuda()
gamma = F.softmax(self.logits, dim=0)
for i in range(len(hs)):
loss += self.n2n_loss(h0, hs[i], gamma[i])
return loss