-
Notifications
You must be signed in to change notification settings - Fork 16
/
utils.py
1130 lines (866 loc) · 40.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import math
import os
import cv2
import subprocess
from datetime import timedelta
from urllib.parse import urlparse
import re
import numpy as np
import PIL
from PIL import Image, ImageDraw
import datetime
import torch
import torchvision
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import torchvision.transforms as transforms
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
import random
from skimage.metrics import structural_similarity as compare_ssim
from diffusers.utils import load_image
def export_to_video(video_frames, output_video_path, fps):
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
h, w, _ = video_frames[0].shape
video_writer = cv2.VideoWriter(
output_video_path, fourcc, fps=fps, frameSize=(w, h))
for i in range(len(video_frames)):
img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
video_writer.write(img)
def export_to_gif(frames, output_gif_path, fps):
"""
Export a list of frames to a GIF.
Args:
- frames (list): List of frames (as numpy arrays or PIL Image objects).
- output_gif_path (str): Path to save the output GIF.
- duration_ms (int): Duration of each frame in milliseconds.
"""
# Convert numpy arrays to PIL Images if needed
pil_frames = [Image.fromarray(frame) if isinstance(
frame, np.ndarray) else frame for frame in frames]
pil_frames[0].save(output_gif_path.replace('.mp4', '.gif'),
format='GIF',
append_images=pil_frames[1:],
save_all=True,
duration=100,
loop=0)
from PIL import Image
import numpy as np
def export_gif_with_ref(start_image, frames, end_image, reference_image, output_gif_path, fps):
"""
Export a list of frames into a GIF with columns and an additional version with only frames.
Args:
- start_image (PIL.Image): The starting image.
- frames (list): List of frames (as numpy arrays or PIL Image objects).
- end_image (PIL.Image): The ending image.
- reference_image (PIL.Image): The reference image.
- output_gif_path (str): Path to save the output GIF.
- fps (int): Frames per second for the GIF.
"""
# Convert numpy frames to PIL Images if needed
pil_frames = [Image.fromarray(frame) if isinstance(frame, np.ndarray) else frame for frame in frames]
# Get dimensions of images
width, height = start_image.size
# Resize the reference image and frames to match the height of start and end images if needed
reference_image = reference_image.resize((reference_image.width, height))
resized_frames = [frame.resize((frame.width, height)) for frame in pil_frames]
# Create a new image for each frame with the three columns
column_frames = []
for frame in resized_frames:
# Create an empty image with the total width for all three columns
new_width = start_image.width + reference_image.width + end_image.width+frame.width
combined_frame = Image.new('RGB', (new_width, height))
# Paste the start image, reference image, and frame into the new image
combined_frame.paste(start_image, (0, 0))
combined_frame.paste(reference_image, (start_image.width, 0))
combined_frame.paste(end_image, (start_image.width + reference_image.width, 0))
combined_frame.paste(frame, (start_image.width + reference_image.width+end_image.width, 0))
column_frames.append(combined_frame)
# Calculate frame duration in milliseconds based on fps
frame_duration = 150
# Save the GIF with columns
column_frames[0].save(output_gif_path,
format='GIF',
append_images=column_frames[1:],
save_all=True,
duration=frame_duration,
loop=0)
def tensor_to_vae_latent(t, vae):
video_length = t.shape[1]
t = rearrange(t, "b f c h w -> (b f) c h w")
latents = vae.encode(t).latent_dist.sample()
latents = rearrange(latents, "(b f) c h w -> b f c h w", f=video_length)
latents = latents * vae.config.scaling_factor
return latents
def download_image(url):
original_image = (
lambda image_url_or_path: load_image(image_url_or_path)
if urlparse(image_url_or_path).scheme
else PIL.Image.open(image_url_or_path).convert("RGB")
)(url)
return original_image
def map_ssim_distance(dis):
if dis > 0.95:
return 1
elif dis > 0.9:
return 2
elif dis > 0.85:
return 3
elif dis > 0.80:
return 4
elif dis > 0.75:
return 5
elif dis > 0.70:
return 6
elif dis > 0.65:
return 7
elif dis > 0.60:
return 8
elif dis > 0.55:
return 9
else:
return 10
def calculate_ssim(frame1, frame2):
# convert the frames to grayscale images since the compare_ssim function accepts grayscale images
gray_frame1 = cv2.cvtColor(frame1, cv2.COLOR_RGB2GRAY)
gray_frame2 = cv2.cvtColor(frame2, cv2.COLOR_RGB2GRAY)
# compute SSIM
ssim = compare_ssim(gray_frame1, gray_frame2)
return ssim
def mse(image1, image2):
err = np.sum((image1.astype("float") - image2.astype("float")) ** 2)
err /= float(image1.shape[0] * image1.shape[1])
return err
def calculate_video_motion_distance(frames_data):
# obtain the number of frames in the video
frame_count, _, _, _ = frames_data.shape
# init
similarities = []
# calculate the similarity between each two frames
for frame_index in range(1, frame_count):
prev_frame = frames_data[frame_index - 1, :, :, :]
current_frame = frames_data[frame_index, :, :, :]
# calculate the similarity, you can choose to use SSIM or MSE, etc.
similarity = calculate_ssim(prev_frame, current_frame)
similarities.append(similarity)
# calculate the mean similarity as the motion distance of the video
motion_distance = np.mean(similarities)
return similarities, motion_distance
def load_images_from_folder_to_pil(folder, target_size=(512, 512)):
images = []
valid_extensions = {".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"} # Add or remove extensions as needed
def frame_number(filename):
# Try the pattern 'frame_x_7fps'
new_pattern_match = re.search(r'frame_(\d+)_7fps', filename)
if new_pattern_match:
return int(new_pattern_match.group(1))
# If the new pattern is not found, use the original digit extraction method
matches = re.findall(r'\d+', filename)
if matches:
if matches[-1] == '0000' and len(matches) > 1:
return int(matches[-2]) # Return the second-to-last sequence if the last is '0000'
return int(matches[-1]) # Otherwise, return the last sequence
return float('inf') # Return 'inf'
# Sorting files based on frame number
# sorted_files = sorted(os.listdir(folder), key=frame_number)
sorted_files = sorted(os.listdir(folder))
# Load, resize, and convert images
for filename in sorted_files:
ext = os.path.splitext(filename)[1].lower()
if ext in valid_extensions:
img_path = os.path.join(folder, filename)
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # Read image with original channels
if img is not None:
# Resize image
img = cv2.resize(img, target_size, interpolation=cv2.INTER_AREA)
# Convert to uint8 if necessary
if img.dtype == np.uint16:
img = (img / 256).astype(np.uint8)
# Ensure all images are in RGB format
if len(img.shape) == 2: # Grayscale image
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
elif len(img.shape) == 3 and img.shape[2] == 3: # Color image in BGR format
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Convert the numpy array to a PIL image
pil_img = Image.fromarray(img)
images.append(pil_img)
return images
def extract_frames_from_video(video_path):
video_capture = cv2.VideoCapture(video_path)
frames = []
if not video_capture.isOpened():
return frames
while True:
ret, frame = video_capture.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(frame_rgb)
frames.append(pil_image)
video_capture.release()
return frames
def export_gif_side_by_side(ref_frame,sketches, frames, output_gif_path, fps):
"""
Export a list of frames into a GIF with columns and an additional version with only frames.
Args:
- start_image (PIL.Image): The starting image.
- frames (list): List of frames (as numpy arrays or PIL Image objects).
- end_image (PIL.Image): The ending image.
- reference_image (PIL.Image): The reference image.
- output_gif_path (str): Path to save the output GIF.
- fps (int): Frames per second for the GIF.
"""
# Convert numpy frames to PIL Images if needed
pil_frames = [Image.fromarray(frame) if isinstance(frame, np.ndarray) else frame for frame in frames]
# Get dimensions of images
width, height = pil_frames[0].size
resized_frames = [frame.resize((width, height)) for frame in pil_frames]
resized_sketches = [sketch.resize((width, height)) for sketch in sketches]
ref_frame=ref_frame.resize((width, height))
# Create a new image for each frame with the three columns
column_frames = []
for i, frame in enumerate(resized_frames):
# Create an empty image with the total width for all three columns
new_width = resized_sketches[0].width + frame.width+frame.width
combined_frame = Image.new('RGB', (new_width, height))
# Paste the start image, reference image, and frame into the new image
combined_frame.paste(ref_frame, (0, 0))
combined_frame.paste(resized_sketches[i], (resized_sketches[0].width, 0))
combined_frame.paste(frame, (resized_sketches[0].width+resized_sketches[0].width, 0))
column_frames.append(combined_frame)
# Calculate frame duration in milliseconds based on fps
frame_duration = 150
# Save the GIF with columns
column_frames[0].save(output_gif_path,
format='GIF',
append_images=column_frames[1:],
save_all=True,
duration=frame_duration,
loop=0)
#shuffle operation
def safe_round(coords, size):
height, width = size[1], size[2]
rounded_coords = np.round(coords).astype(int)
rounded_coords[:, 0] = np.clip(rounded_coords[:, 0], 0, width - 1)
rounded_coords[:, 1] = np.clip(rounded_coords[:, 1], 0, height - 1)
return rounded_coords
def random_number(num_points,size,coords0,coords1):
shuffle_indices = np.random.permutation(np.arange(coords0.shape[0]))
shuffled_coords0 = coords0[shuffle_indices]
shuffled_coords1 = coords1[shuffle_indices]
indices = np.random.choice(np.arange(shuffled_coords0.shape[0]), size=num_points, replace=False)
# selected_coords0 = coords0[indices]
# selected_coords1 = coords1[indices]
selected_coords0 = shuffled_coords0[indices]
selected_coords1 = shuffled_coords1[indices]
h, w = size[1], size[2]
mask0 = np.zeros((h, w), dtype=np.uint8)
mask1 = np.zeros((h, w), dtype=np.uint8)
for i, (coord0, coord1) in enumerate(zip(selected_coords0, selected_coords1)):
x0, y0 = coord0
x1, y1 = coord1
# import ipdb;ipdb.set_trace()
mask0[y0, x0] = i + 1
mask1[y1, x1] = i + 1
return mask0,mask1
def split_and_shuffle(image, coordinates):
assert image.shape[1] % 2 == 0 and image.shape[2] % 2 == 0, "Height and width must be even."
H, W = image.shape[1], image.shape[2]
patches_img = [
image[:, :H//2, :W//2],
image[:, :H//2, W//2:],
image[:, H//2:, :W//2],
image[:, H//2:, W//2:]
]
patch_coords = [
(0, H//2, 0, W//2),
(0, H//2, W//2, W),
(H//2, H, 0, W//2),
(H//2, H, W//2, W)
]
indices = list(range(4))
random.shuffle(indices)
new_patch_coords = [
(0, 0),
(0, W//2),
(H//2, 0),
(H//2, W//2)
]
new_coordinates = np.zeros_like(coordinates)
for i, (r, c) in enumerate(coordinates):
for idx, (r1, r2, c1, c2) in enumerate(patch_coords):
if r1 <= r < r2 and c1 <= c < c2:
new_r = r - r1 + new_patch_coords[indices.index(idx)][0]
new_c = c - c1 + new_patch_coords[indices.index(idx)][1]
new_coordinates[i] = [new_r, new_c]
break
shuffled_img = torch.cat([
torch.cat([patches_img[indices[0]], patches_img[indices[1]]], dim=2),
torch.cat([patches_img[indices[2]], patches_img[indices[3]]], dim=2)
], dim=1)
return shuffled_img, new_coordinates
import os
import cv2
def extract_frames_from_videos(video_folder):
for filename in os.listdir(video_folder):
if filename.endswith('.mp4'):
video_path = os.path.join(video_folder, filename)
frames_folder = os.path.join("processed_video", os.path.splitext(filename)[0])
os.makedirs(frames_folder, exist_ok=True)
cap = cv2.VideoCapture(video_path)
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
frame_filename = os.path.join(frames_folder, f'frame_{frame_count:04d}.jpg')
cv2.imwrite(frame_filename, frame)
frame_count += 1
cap.release()
print(f'Extracted {frame_count} frames from {filename} and saved to {frames_folder}')
def create_videos_from_frames(base_folder, output_folder, frame_rate=30):
for root, dirs, files in os.walk(base_folder):
frames = []
for file in sorted(files):
if file.endswith(('.jpg', '.png')):
frame_path = os.path.join(root, file)
frames.append(frame_path)
if len(frames) == 14:
video_name = os.path.basename(root) + '.mp4'
video_path = os.path.join(output_folder, video_name)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
first_frame = cv2.imread(frames[0])
height, width, layers = first_frame.shape
video_writer = cv2.VideoWriter(video_path, fourcc, frame_rate, (width, height))
for frame in frames:
img = cv2.imread(frame)
video_writer.write(img)
video_writer.release()
print(f'Created video: {video_path}')
def random_rotate(image, angle_range=(-60, 60)):
angle = random.uniform(*angle_range)
return image.rotate(angle, fillcolor=(255, 255, 255))
def random_crop(image,ratio=0.9):
width, height = image.size
ratio = random.uniform(0.6, 1.0)
# print('ratio',ratio)
top = random.randint(0, height - int(height*ratio))
left = random.randint(0, width - int(width*ratio))
image=image.crop((left, top, left + int( width*ratio), top + int(height*ratio)))
image=image.resize((width,height))
return image
def random_flip(image):
if random.random() < 0.5:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
if random.random() < 0.5:
image = image.transpose(Image.FLIP_TOP_BOTTOM)
return image
def patch_shuffle(image, num_patches):
C, H, W = image.shape
assert H % num_patches == 0 and W % num_patches == 0, "Image dimensions must be divisible by num_patches"
patch_size_h = H // num_patches
patch_size_w = W // num_patches
patches = image.unfold(1, patch_size_h, patch_size_h).unfold(2, patch_size_w, patch_size_w)
patches = patches.contiguous().view(C, num_patches * num_patches, patch_size_h, patch_size_w)
shuffle_idx = torch.randperm(num_patches * num_patches)
shuffled_patches = patches[:, shuffle_idx, :, :]
shuffled_patches = shuffled_patches.view(C, num_patches, num_patches, patch_size_h, patch_size_w)
shuffled_image = shuffled_patches.permute(0, 1, 3, 2, 4).contiguous()
shuffled_image = shuffled_image.view(C, H, W)
return shuffled_image
def augment_image(image,k):
image = random_rotate(image)
image = random_crop(image)
image = random_flip(image)
# torch_image = torchvision.transforms.ToTensor()(image)
# patch_shuffled_image = patch_shuffle(torch_image, k)
# to_pil = transforms.ToPILImage()
# image = to_pil(patch_shuffled_image)
return image
def load_images_from_folder(folder):
image_list = []
for filename in os.listdir(folder):
if filename.endswith(".png") or filename.endswith(".jpg") or filename.endswith(".jpeg"):
img_path = os.path.join(folder, filename)
try:
img = Image.open(img_path)
image_list.append(img)
except Exception as e:
print(f"Error loading image {filename}: {e}")
return image_list
def get_mask(model, input_img, s=640):
input_img = (input_img / 255).astype(np.float32)
h, w = h0, w0 = input_img.shape[:-1]
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
ph, pw = s - h, s - w
img_input = np.zeros([s, s, 3], dtype=np.float32)
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(input_img, (w, h))
img_input = np.transpose(img_input, (2, 0, 1))
img_input = img_input[np.newaxis, :]
tmpImg = torch.from_numpy(img_input).type(torch.FloatTensor).to(model.device)
with torch.no_grad():
pred = model(tmpImg)
pred = pred.cpu().numpy()[0]
pred = np.transpose(pred, (1, 2, 0))
pred = pred[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
pred = cv2.resize(pred, (w0, h0))[:, :, np.newaxis]
return pred
# code from
def safe_round(coords, size):
height, width = size[1], size[2]
rounded_coords = np.round(coords).astype(int)
rounded_coords[:, 0] = np.clip(rounded_coords[:, 0], 0, width - 1)
rounded_coords[:, 1] = np.clip(rounded_coords[:, 1], 0, height - 1)
return rounded_coords
def random_number(num_points,size,coords0,coords1):
shuffle_indices = np.random.permutation(np.arange(coords0.shape[0]))
shuffled_coords0 = coords0[shuffle_indices]
shuffled_coords1 = coords1[shuffle_indices]
indices = np.random.choice(np.arange(shuffled_coords0.shape[0]), size=num_points, replace=False)
# selected_coords0 = coords0[indices]
# selected_coords1 = coords1[indices]
selected_coords0 = shuffled_coords0[indices]
selected_coords1 = shuffled_coords1[indices]
h, w = size[1], size[2]
mask0 = np.zeros((h, w), dtype=np.uint8)
mask1 = np.zeros((h, w), dtype=np.uint8)
for i, (coord0, coord1) in enumerate(zip(selected_coords0, selected_coords1)):
x0, y0 = coord0
x1, y1 = coord1
# import ipdb;ipdb.set_trace()
mask0[y0, x0] = i + 1
mask1[y1, x1] = i + 1
return mask0,mask1
import torch
def split_and_shuffle(image, keypoints, num_rows, num_cols):
"""
Split the image into tiles, shuffle them, and update the keypoints accordingly.
Parameters:
- image: Tensor of shape (3, H, W)
- keypoints: Tensor of shape (num_k, 2)
- num_rows: int, number of rows to split
- num_cols: int, number of columns to split
Returns:
- shuffled_image: Tensor of shape (3, H, W)
- new_keypoints: Tensor of shape (num_k, 2)
"""
C, H, W = image.shape
# Calculate padding to make H and W divisible by num_rows and num_cols
pad_h = (num_rows - H % num_rows) % num_rows
pad_w = (num_cols - W % num_cols) % num_cols
# Pad the image
H_padded = H + pad_h
W_padded = W + pad_w
padded_image = torch.zeros((C, H_padded, W_padded), dtype=image.dtype).to(image.device)
padded_image[:, :H, :W] = image
# Compute tile size
tile_height = H_padded // num_rows
tile_width = W_padded // num_cols
# Reshape and permute to get tiles
tiles = padded_image.reshape(C,
num_rows,
tile_height,
num_cols,
tile_width)
tiles = tiles.permute(1, 3, 0, 2, 4).contiguous()
num_tiles = num_rows * num_cols
tiles = tiles.view(num_tiles, C, tile_height, tile_width)
# Shuffle the tiles
idx_shuffle = torch.randperm(num_tiles).to(image.device)
tiles_shuffled = tiles[idx_shuffle]
# Reshape back to image
tiles_shuffled = tiles_shuffled.view(num_rows, num_cols, C, tile_height, tile_width)
shuffled_image = tiles_shuffled.permute(2, 0, 3, 1, 4).contiguous()
shuffled_image = shuffled_image.view(C, H_padded, W_padded)
shuffled_image = shuffled_image[:, :H, :W] # Crop back to original size
# Update keypoints
x = keypoints[:, 0]
y = keypoints[:, 1]
# Compute the tile indices where the keypoints are located
tile_rows = (y / tile_height).long()
tile_cols = (x / tile_width).long()
tile_indices = tile_rows * num_cols + tile_cols # Shape: (num_k,)
# Create inverse mapping from old tile indices to new tile positions
idx_unshuffle = torch.argsort(idx_shuffle) # idx_unshuffle[old_index] = new_index
# Get new tile indices for each keypoint
new_tile_indices = idx_unshuffle[tile_indices]
new_tile_rows = new_tile_indices // num_cols
new_tile_cols = new_tile_indices % num_cols
# Compute offsets within the tile
offset_x = x % tile_width
offset_y = y % tile_height
# Compute new keypoints coordinates
new_x = new_tile_cols * tile_width + offset_x
new_y = new_tile_rows * tile_height + offset_y
# Ensure keypoints are within image boundaries
new_x = new_x.clamp(0, W - 1)
new_y = new_y.clamp(0, H - 1)
new_keypoints = torch.stack([new_x, new_y], dim=1)
return shuffled_image, new_keypoints
def generate_point_map(size, coords0, coords1):
h, w = size[1], size[2]
mask0 = np.zeros((h, w), dtype=np.uint8)
mask1 = np.zeros((h, w), dtype=np.uint8)
for i, (coord0, coord1) in enumerate(zip(coords0, coords1)):
x0, y0 = coord0
x1, y1 = coord1
x0, y0 = int(round(x0)), int(round(y0))
x1, y1 = int(round(x1)), int(round(y1))
if 0 <= x0 < w and 0 <= y0 < h:
mask0[y0, x0] = i + 1
if 0 <= x1 < w and 0 <= y1 < h:
mask1[y1, x1] = i + 1
return mask0, mask1
def select_multiple_points(points0, points1, num_points):
N = len(points0)
num_points = min(num_points, N)
indices = np.random.choice(N, size=num_points, replace=False)
selected_points0 = points0[indices]
selected_points1 = points1[indices]
return selected_points0, selected_points1
def generate_point_map_frames(size, coords0, coords1,visibility):
h, w = size[1], size[2]
mask0 = np.zeros((h, w), dtype=np.uint8)
num_frames = coords1.shape[0]
mask1 = np.zeros((num_frames, h, w), dtype=np.uint8)
for i, coord0 in enumerate(coords0):
x0, y0 = coord0
x0, y0 = int(round(x0)), int(round(y0))
if 0 <= x0 < w and 0 <= y0 < h:
mask0[y0, x0] = i + 1
for frame_idx in range(num_frames):
coords_frame = coords1[frame_idx]
for i, coord1 in enumerate(coords_frame):
x1, y1 = coord1
x1, y1 = int(round(x1)), int(round(y1))
if 0 <= x1 < w and 0 <= y1 < h and visibility[frame_idx,i]==True:
mask1[frame_idx, y1, x1] = i + 1
return mask0, mask1
import numpy as np
def extract_patches(image, coords, patch_size):
N = coords.shape[0]
channels, H, W = image.shape
patches = np.zeros((N, channels, patch_size, patch_size), dtype=image.dtype)
half_size = patch_size // 2
for i in range(N):
x0, y0 = coords[i]
x0 = int(round(x0))
y0 = int(round(y0))
# Define the patch region in the image
x_start_img = x0 - half_size
x_end_img = x0 + half_size + 1
y_start_img = y0 - half_size
y_end_img = y0 + half_size + 1
# Define the region in the patch to fill
x_start_patch = 0
y_start_patch = 0
x_end_patch = patch_size
y_end_patch = patch_size
# Adjust for boundaries
if x_start_img < 0:
x_start_patch = -x_start_img
x_start_img = 0
if y_start_img < 0:
y_start_patch = -y_start_img
y_start_img = 0
if x_end_img > W:
x_end_patch -= (x_end_img - W)
x_end_img = W
if y_end_img > H:
y_end_patch -= (y_end_img - H)
y_end_img = H
# Calculate the actual sizes
patch_height = y_end_patch - y_start_patch
patch_width = x_end_patch - x_start_patch
img_height = y_end_img - y_start_img
img_width = x_end_img - x_start_img
# Ensure the sizes match
if patch_height != img_height or patch_width != img_width:
min_height = min(patch_height, img_height)
min_width = min(patch_width, img_width)
y_end_patch = y_start_patch + min_height
y_end_img = y_start_img + min_height
x_end_patch = x_start_patch + min_width
x_end_img = x_start_img + min_width
# Assign the image patch to the patches array
patches[i, :, y_start_patch:y_end_patch, x_start_patch:x_end_patch] = \
image[:, y_start_img:y_end_img, x_start_img:x_end_img]
return patches
def generate_point_feature_map_frames_naive(image, size, coords0, coords1, visibility, patch_size):
channels, H, W = size
num_frames = coords1.shape[0]
N = coords0.shape[0]
# Extract patches from the reference image at coords0
patches = extract_patches(image, coords0, patch_size)
half_size = patch_size // 2
# Initialize the feature maps
feature_maps = np.zeros((num_frames, channels, H, W), dtype=image.dtype)
for frame_idx in range(num_frames):
feature_map = np.zeros((channels, H, W), dtype=image.dtype)
coords_frame = coords1[frame_idx]
for i in range(N):
if visibility[frame_idx, i]:
x1, y1 = coords_frame[i]
x1 = int(round(x1))
y1 = int(round(y1))
# Define the patch region in the feature map
x_start_map = x1 - half_size
x_end_map = x1 + half_size + 1
y_start_map = y1 - half_size
y_end_map = y1 + half_size + 1
# Define the region in the patch to use
x_start_patch = 0
y_start_patch = 0
x_end_patch = patch_size
y_end_patch = patch_size
# Adjust for boundaries
if x_start_map < 0:
x_start_patch = -x_start_map
x_start_map = 0
if y_start_map < 0:
y_start_patch = -y_start_map
y_start_map = 0
if x_end_map > W:
x_end_patch -= (x_end_map - W)
x_end_map = W
if y_end_map > H:
y_end_patch -= (y_end_map - H)
y_end_map = H
# Calculate the actual sizes
patch_height = y_end_patch - y_start_patch
patch_width = x_end_patch - x_start_patch
map_height = y_end_map - y_start_map
map_width = x_end_map - x_start_map
# Ensure the sizes match
if patch_height != map_height or patch_width != map_width:
min_height = min(patch_height, map_height)
min_width = min(patch_width, map_width)
y_end_patch = y_start_patch + min_height
y_end_map = y_start_map + min_height
x_end_patch = x_start_patch + min_width
x_end_map = x_start_map + min_width
# Place the patch into the feature map
feature_map[:, y_start_map:y_end_map, x_start_map:x_end_map] = \
patches[i, :, y_start_patch:y_end_patch, x_start_patch:x_end_patch]
feature_maps[frame_idx] = feature_map
return feature_maps
import os
from PIL import Image
import numpy as np
from moviepy.editor import ImageSequenceClip
def export_gif_side_by_side_complete(ref_frame, sketches, frames, output_gif_path, supp_dir,fps):
"""
Export frames into a GIF and an MP4 video with columns, and save individual frames and sketches.
Args:
- ref_frame (PIL.Image or np.ndarray): The reference image.
- sketches (list): List of sketch images (as numpy arrays or PIL Image objects).
- frames (list): List of frames (as numpy arrays or PIL Image objects).
- output_gif_path (str): Path to save the output GIF.
- fps (int): Frames per second for the GIF and MP4.
"""
# Ensure the output directory exists
output_dir = os.path.dirname(output_gif_path)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Get the base name of the output file (without extension)
base_name = os.path.splitext(os.path.basename(output_gif_path))[0]
# Create subdirectories for sketches and frames
sketch_dir = os.path.join(supp_dir,"sketches")
frame_dir = os.path.join(supp_dir,"frames")
os.makedirs(sketch_dir, exist_ok=True)
os.makedirs(frame_dir, exist_ok=True)
# Convert numpy arrays to PIL Images if needed
pil_frames = [Image.fromarray(frame) if isinstance(frame, np.ndarray) else frame for frame in frames]
pil_sketches = [Image.fromarray(sketch) if isinstance(sketch, np.ndarray) else sketch for sketch in sketches]
ref_frame = Image.fromarray(ref_frame) if isinstance(ref_frame, np.ndarray) else ref_frame
# Get dimensions of images
width, height = pil_frames[0].size
# Resize images
resized_frames = [frame.resize((width, height)) for frame in pil_frames]
resized_sketches = [sketch.resize((width, height)) for sketch in pil_sketches]
ref_frame = ref_frame.resize((width, height))
# Save each sketch frame
for i, sketch in enumerate(resized_sketches):
sketch_filename = os.path.join(sketch_dir, f"{base_name}_sketch_{i:04d}.png")
sketch.save(sketch_filename)
# Save each frame
for i, frame in enumerate(resized_frames):
frame_filename = os.path.join(frame_dir, f"{base_name}_frame_{i:04d}.png")
frame.save(frame_filename)
# Save reference frame
ref_filename = os.path.join(supp_dir, f"{base_name}_reference.png")
ref_frame.save(ref_filename)
# Create a new image for each frame with the three columns
column_frames = []
for i, frame in enumerate(resized_frames):
# Create an empty image with the total width for all three columns
new_width = ref_frame.width + resized_sketches[i].width + frame.width
combined_frame = Image.new('RGB', (new_width, height))
# Paste the reference image, sketch, and frame into the new image
combined_frame.paste(ref_frame, (0, 0))
combined_frame.paste(resized_sketches[i], (ref_frame.width, 0))
combined_frame.paste(frame, (ref_frame.width + resized_sketches[i].width, 0))
column_frames.append(combined_frame)
# Calculate frame duration in milliseconds based on fps
frame_duration = int(1000 / fps)
# Save the GIF with columns
column_frames[0].save(output_gif_path,
format='GIF',
append_images=column_frames[1:],
save_all=True,
duration=frame_duration,
loop=0)
# Save the MP4 video with the same content
output_mp4_path = os.path.join(supp_dir , 'result.mp4')
# Convert PIL Images to numpy arrays for moviepy
video_frames = [np.array(frame) for frame in column_frames]
clip = ImageSequenceClip(video_frames, fps=fps)
clip.write_videofile(output_mp4_path, codec='libx264')
def export_gif_with_ref_complete(start_image, frames, end_image, reference_image, output_gif_path, supp_dir, fps):
"""
Export a list of frames into a GIF with columns, save individual images and frames,
and create an MP4 video, following the storage method of 'export_gif_side_by_side_complete'.
Args:
- start_image (PIL.Image or np.ndarray): The starting image.
- frames (list): List of frames (as numpy arrays or PIL Image objects).
- end_image (PIL.Image or np.ndarray): The ending image.
- reference_image (PIL.Image or np.ndarray): The reference image.
- output_gif_path (str): Path to save the output GIF.
- supp_dir (str): Directory to save supplementary files.
- fps (int): Frames per second for the GIF and MP4.
"""
# Ensure the output directory exists
output_dir = os.path.dirname(output_gif_path)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Get the base name of the output file (without extension)
base_name = os.path.splitext(os.path.basename(output_gif_path))[0]
# Create subdirectories for images and frames
start_end_dir = os.path.join(supp_dir, "start_end_images")
frame_dir = os.path.join(supp_dir, "frames")
reference_dir = os.path.join(supp_dir, "reference")
os.makedirs(start_end_dir, exist_ok=True)
os.makedirs(frame_dir, exist_ok=True)
os.makedirs(reference_dir, exist_ok=True)
# Convert numpy arrays to PIL Images if needed
pil_frames = [Image.fromarray(frame) if isinstance(frame, np.ndarray) else frame for frame in frames]
start_image = Image.fromarray(start_image) if isinstance(start_image, np.ndarray) else start_image
end_image = Image.fromarray(end_image) if isinstance(end_image, np.ndarray) else end_image
reference_image = Image.fromarray(reference_image) if isinstance(reference_image, np.ndarray) else reference_image
# Get dimensions of images
width, height = start_image.size
# Resize images to match the height
reference_image = reference_image.resize((reference_image.width, height))
resized_frames = [frame.resize((frame.width, height)) for frame in pil_frames]
# Save start_image, end_image, and reference_image
start_image_filename = os.path.join(start_end_dir, f"{base_name}_start.png")
start_image.save(start_image_filename)