-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReadme.html
executable file
·691 lines (587 loc) · 67.2 KB
/
Readme.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title>P6: Exploring Prosper Loan Dataset</title>
<script type="text/javascript">
window.onload = function() {
var imgs = document.getElementsByTagName('img'), i, img;
for (i = 0; i < imgs.length; i++) {
img = imgs[i];
// center an image if it is the only element of its parent
if (img.parentElement.childElementCount === 1)
img.parentElement.style.textAlign = 'center';
}
};
</script>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: #990073
}
pre .number {
color: #099;
}
pre .comment {
color: #998;
font-style: italic
}
pre .keyword {
color: #900;
font-weight: bold
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: #d14;
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 13px;
}
body {
max-width: 800px;
margin: auto;
padding: 1em;
line-height: 20px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre, img {
max-width: 100%;
}
pre {
overflow-x: auto;
}
pre code {
display: block; padding: 0.5em;
}
code {
font-size: 92%;
border: 1px solid #ccc;
}
code[class] {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
</head>
<body>
<h1>P6: Exploring Prosper Loan Dataset</h1>
<p>Author: Ying Wu</p>
<h1>Introduction</h1>
<p>Prosper is a company that offers a marketplace for peer to peer lending.
Individuals can request loans and Prosper will calculate a score value
indicating the risk of the loan the individual is asking for and then
add that loan into their system. Investors can choose the type of loans
that they would want to get exposure to allowing them to trade off risk
for return.</p>
<p>My goal is to pick out an interesting facet of this loan data and explore
it further using a d3.js visualization.</p>
<h1>Exploration</h1>
<p>Looking through the variable definitions, I was most intrigued by the categories.
I exploring the relationship between these categories and the rest of the
variables available in the Prosper loan data.</p>
<pre><code class="r">library(data.table)
library(ggplot2)
# dt = fread("prosperLoanData.csv") # everything is character
df = read.table("prosperLoanData.csv", header=T, sep=",")
dt = as.data.table(df)
rm(df)
dt$ListingNumber = as.factor(dt$ListingNumber)
dt$ListingCreationDate = as.POSIXct(dt$ListingCreationDate)
dt$Term = as.factor(dt$Term)
dt$ClosedDate = as.Date(dt$ClosedDate)
dt$ListingCategory..numeric. = factor(dt$ListingCategory..numeric.)
levels(dt$ListingCategory..numeric.) = c(NA, "Debt Consolidation", "Home Improvement", "Business", "Personal Loan",
"Student Use", "Auto", "Other", "Baby&Adoption", "Boat", "Cosmetic Procedure",
"Engagement Ring", "Green Loans", "Household Expenses", "Large Purchases",
"Medical/Dental", "Motorcycle", "RV", "Taxes", "Vacation", "Wedding Loans")
dt$DateCreditPulled = as.POSIXct(dt$DateCreditPulled)
dt$FirstRecordedCreditLine = as.Date(dt$FirstRecordedCreditLine)
dt$LoanOriginationDate = as.Date(dt$LoanOriginationDate)
dt$IncomeRange = ordered(dt$IncomeRange, levels(dt$IncomeRange)[c(8, 1, 3, 4, 5, 6, 2, 7)])
summary(dt)
</code></pre>
<pre><code>## ListingKey ListingNumber
## 17A93590655669644DB4C06: 6 951186 : 6
## 349D3587495831350F0F648: 4 882888 : 4
## 47C1359638497431975670B: 4 892845 : 4
## 8474358854651984137201C: 4 1056749: 4
## DE8535960513435199406CE: 4 1057901: 4
## 04C13599434217079754AEE: 3 875616 : 3
## (Other) :113912 (Other):113912
## ListingCreationDate CreditGrade Term
## Min. :2005-11-09 20:44:28 :84984 12: 1614
## 1st Qu.:2008-09-19 10:02:14 C : 5649 36:87778
## Median :2012-06-16 12:37:19 D : 5153 60:24545
## Mean :2011-07-09 08:30:35 B : 4389
## 3rd Qu.:2013-09-09 19:40:48 AA : 3509
## Max. :2014-03-10 12:20:53 HR : 3508
## (Other): 6745
## LoanStatus ClosedDate BorrowerAPR
## Current :56576 Min. :2005-11-25 Min. :0.00653
## Completed :38074 1st Qu.:2009-07-14 1st Qu.:0.15629
## Chargedoff :11992 Median :2011-04-05 Median :0.20976
## Defaulted : 5018 Mean :2011-03-07 Mean :0.21883
## Past Due (1-15 days) : 806 3rd Qu.:2013-01-30 3rd Qu.:0.28381
## Past Due (31-60 days): 363 Max. :2014-03-10 Max. :0.51229
## (Other) : 1108 NA's :58848 NA's :25
## BorrowerRate LenderYield EstimatedEffectiveYield
## Min. :0.0000 Min. :-0.0100 Min. :-0.183
## 1st Qu.:0.1340 1st Qu.: 0.1242 1st Qu.: 0.116
## Median :0.1840 Median : 0.1730 Median : 0.162
## Mean :0.1928 Mean : 0.1827 Mean : 0.169
## 3rd Qu.:0.2500 3rd Qu.: 0.2400 3rd Qu.: 0.224
## Max. :0.4975 Max. : 0.4925 Max. : 0.320
## NA's :29084
## EstimatedLoss EstimatedReturn ProsperRating..numeric.
## Min. :0.005 Min. :-0.183 Min. :1.000
## 1st Qu.:0.042 1st Qu.: 0.074 1st Qu.:3.000
## Median :0.072 Median : 0.092 Median :4.000
## Mean :0.080 Mean : 0.096 Mean :4.072
## 3rd Qu.:0.112 3rd Qu.: 0.117 3rd Qu.:5.000
## Max. :0.366 Max. : 0.284 Max. :7.000
## NA's :29084 NA's :29084 NA's :29084
## ProsperRating..Alpha. ProsperScore ListingCategory..numeric.
## :29084 Min. : 1.00 Debt Consolidation:58308
## C :18345 1st Qu.: 4.00 Other :10494
## B :15581 Median : 6.00 Home Improvement : 7433
## A :14551 Mean : 5.95 Business : 7189
## D :14274 3rd Qu.: 8.00 Auto : 2572
## E : 9795 Max. :11.00 (Other) :10976
## (Other):12307 NA's :29084 NA's :16965
## BorrowerState Occupation EmploymentStatus
## CA :14717 Other :28617 Employed :67322
## TX : 6842 Professional :13628 Full-time :26355
## NY : 6729 Computer Programmer : 4478 Self-employed: 6134
## FL : 6720 Executive : 4311 Not available: 5347
## IL : 5921 Teacher : 3759 Other : 3806
## : 5515 Administrative Assistant: 3688 : 2255
## (Other):67493 (Other) :55456 (Other) : 2718
## EmploymentStatusDuration IsBorrowerHomeowner CurrentlyInGroup
## Min. : 0.00 False:56459 False:101218
## 1st Qu.: 26.00 True :57478 True : 12719
## Median : 67.00
## Mean : 96.07
## 3rd Qu.:137.00
## Max. :755.00
## NA's :7625
## GroupKey DateCreditPulled
## :100596 Min. :2005-11-09 00:30:04
## 783C3371218786870A73D20: 1140 1st Qu.:2008-09-16 22:25:27
## 3D4D3366260257624AB272D: 916 Median :2012-06-17 07:52:34
## 6A3B336601725506917317E: 698 Mean :2011-07-09 15:51:53
## FEF83377364176536637E50: 611 3rd Qu.:2013-09-11 14:30:24
## C9643379247860156A00EC0: 342 Max. :2014-03-10 12:20:56
## (Other) : 9634
## CreditScoreRangeLower CreditScoreRangeUpper FirstRecordedCreditLine
## Min. : 0.0 Min. : 19.0 Min. :1947-08-24
## 1st Qu.:660.0 1st Qu.:679.0 1st Qu.:1990-06-01
## Median :680.0 Median :699.0 Median :1995-11-01
## Mean :685.6 Mean :704.6 Mean :1994-11-17
## 3rd Qu.:720.0 3rd Qu.:739.0 3rd Qu.:2000-03-14
## Max. :880.0 Max. :899.0 Max. :2012-12-22
## NA's :591 NA's :591 NA's :697
## CurrentCreditLines OpenCreditLines TotalCreditLinespast7years
## Min. : 0.00 Min. : 0.00 Min. : 2.00
## 1st Qu.: 7.00 1st Qu.: 6.00 1st Qu.: 17.00
## Median :10.00 Median : 9.00 Median : 25.00
## Mean :10.32 Mean : 9.26 Mean : 26.75
## 3rd Qu.:13.00 3rd Qu.:12.00 3rd Qu.: 35.00
## Max. :59.00 Max. :54.00 Max. :136.00
## NA's :7604 NA's :7604 NA's :697
## OpenRevolvingAccounts OpenRevolvingMonthlyPayment InquiriesLast6Months
## Min. : 0.00 Min. : 0.0 Min. : 0.000
## 1st Qu.: 4.00 1st Qu.: 114.0 1st Qu.: 0.000
## Median : 6.00 Median : 271.0 Median : 1.000
## Mean : 6.97 Mean : 398.3 Mean : 1.435
## 3rd Qu.: 9.00 3rd Qu.: 525.0 3rd Qu.: 2.000
## Max. :51.00 Max. :14985.0 Max. :105.000
## NA's :697
## TotalInquiries CurrentDelinquencies AmountDelinquent
## Min. : 0.000 Min. : 0.0000 Min. : 0.0
## 1st Qu.: 2.000 1st Qu.: 0.0000 1st Qu.: 0.0
## Median : 4.000 Median : 0.0000 Median : 0.0
## Mean : 5.584 Mean : 0.5921 Mean : 984.5
## 3rd Qu.: 7.000 3rd Qu.: 0.0000 3rd Qu.: 0.0
## Max. :379.000 Max. :83.0000 Max. :463881.0
## NA's :1159 NA's :697 NA's :7622
## DelinquenciesLast7Years PublicRecordsLast10Years
## Min. : 0.000 Min. : 0.0000
## 1st Qu.: 0.000 1st Qu.: 0.0000
## Median : 0.000 Median : 0.0000
## Mean : 4.155 Mean : 0.3126
## 3rd Qu.: 3.000 3rd Qu.: 0.0000
## Max. :99.000 Max. :38.0000
## NA's :990 NA's :697
## PublicRecordsLast12Months RevolvingCreditBalance BankcardUtilization
## Min. : 0.000 Min. : 0 Min. :0.000
## 1st Qu.: 0.000 1st Qu.: 3121 1st Qu.:0.310
## Median : 0.000 Median : 8549 Median :0.600
## Mean : 0.015 Mean : 17599 Mean :0.561
## 3rd Qu.: 0.000 3rd Qu.: 19521 3rd Qu.:0.840
## Max. :20.000 Max. :1435667 Max. :5.950
## NA's :7604 NA's :7604 NA's :7604
## AvailableBankcardCredit TotalTrades
## Min. : 0 Min. : 0.00
## 1st Qu.: 880 1st Qu.: 15.00
## Median : 4100 Median : 22.00
## Mean : 11210 Mean : 23.23
## 3rd Qu.: 13180 3rd Qu.: 30.00
## Max. :646285 Max. :126.00
## NA's :7544 NA's :7544
## TradesNeverDelinquent..percentage. TradesOpenedLast6Months
## Min. :0.000 Min. : 0.000
## 1st Qu.:0.820 1st Qu.: 0.000
## Median :0.940 Median : 0.000
## Mean :0.886 Mean : 0.802
## 3rd Qu.:1.000 3rd Qu.: 1.000
## Max. :1.000 Max. :20.000
## NA's :7544 NA's :7544
## DebtToIncomeRatio IncomeRange IncomeVerifiable
## Min. : 0.000 $25,000-49,999:32192 False: 8669
## 1st Qu.: 0.140 $50,000-74,999:31050 True :105268
## Median : 0.220 $100,000+ :17337
## Mean : 0.276 $75,000-99,999:16916
## 3rd Qu.: 0.320 Not displayed : 7741
## Max. :10.010 $1-24,999 : 7274
## NA's :8554 (Other) : 1427
## StatedMonthlyIncome LoanKey TotalProsperLoans
## Min. : 0 CB1B37030986463208432A1: 6 Min. :0.00
## 1st Qu.: 3200 2DEE3698211017519D7333F: 4 1st Qu.:1.00
## Median : 4667 9F4B37043517554537C364C: 4 Median :1.00
## Mean : 5608 D895370150591392337ED6D: 4 Mean :1.42
## 3rd Qu.: 6825 E6FB37073953690388BC56D: 4 3rd Qu.:2.00
## Max. :1750003 0D8F37036734373301ED419: 3 Max. :8.00
## (Other) :113912 NA's :91852
## TotalProsperPaymentsBilled OnTimeProsperPayments
## Min. : 0.00 Min. : 0.00
## 1st Qu.: 9.00 1st Qu.: 9.00
## Median : 16.00 Median : 15.00
## Mean : 22.93 Mean : 22.27
## 3rd Qu.: 33.00 3rd Qu.: 32.00
## Max. :141.00 Max. :141.00
## NA's :91852 NA's :91852
## ProsperPaymentsLessThanOneMonthLate ProsperPaymentsOneMonthPlusLate
## Min. : 0.00 Min. : 0.00
## 1st Qu.: 0.00 1st Qu.: 0.00
## Median : 0.00 Median : 0.00
## Mean : 0.61 Mean : 0.05
## 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :42.00 Max. :21.00
## NA's :91852 NA's :91852
## ProsperPrincipalBorrowed ProsperPrincipalOutstanding
## Min. : 0 Min. : 0
## 1st Qu.: 3500 1st Qu.: 0
## Median : 6000 Median : 1627
## Mean : 8472 Mean : 2930
## 3rd Qu.:11000 3rd Qu.: 4127
## Max. :72499 Max. :23451
## NA's :91852 NA's :91852
## ScorexChangeAtTimeOfListing LoanCurrentDaysDelinquent
## Min. :-209.00 Min. : 0.0
## 1st Qu.: -35.00 1st Qu.: 0.0
## Median : -3.00 Median : 0.0
## Mean : -3.22 Mean : 152.8
## 3rd Qu.: 25.00 3rd Qu.: 0.0
## Max. : 286.00 Max. :2704.0
## NA's :95009
## LoanFirstDefaultedCycleNumber LoanMonthsSinceOrigination LoanNumber
## Min. : 0.00 Min. : 0.0 Min. : 1
## 1st Qu.: 9.00 1st Qu.: 6.0 1st Qu.: 37332
## Median :14.00 Median : 21.0 Median : 68599
## Mean :16.27 Mean : 31.9 Mean : 69444
## 3rd Qu.:22.00 3rd Qu.: 65.0 3rd Qu.:101901
## Max. :44.00 Max. :100.0 Max. :136486
## NA's :96985
## LoanOriginalAmount LoanOriginationDate LoanOriginationQuarter
## Min. : 1000 Min. :2005-11-15 Q4 2013:14450
## 1st Qu.: 4000 1st Qu.:2008-10-02 Q1 2014:12172
## Median : 6500 Median :2012-06-26 Q3 2013: 9180
## Mean : 8337 Mean :2011-07-21 Q2 2013: 7099
## 3rd Qu.:12000 3rd Qu.:2013-09-18 Q3 2012: 5632
## Max. :35000 Max. :2014-03-12 Q2 2012: 5061
## (Other):60343
## MemberKey MonthlyLoanPayment LP_CustomerPayments
## 63CA34120866140639431C9: 9 Min. : 0.0 Min. : -2.35
## 16083364744933457E57FB9: 8 1st Qu.: 131.6 1st Qu.: 1005.76
## 3A2F3380477699707C81385: 8 Median : 217.7 Median : 2583.83
## 4D9C3403302047712AD0CDD: 8 Mean : 272.5 Mean : 4183.08
## 739C338135235294782AE75: 8 3rd Qu.: 371.6 3rd Qu.: 5548.40
## 7E1733653050264822FAA3D: 8 Max. :2251.5 Max. :40702.39
## (Other) :113888
## LP_CustomerPrincipalPayments LP_InterestandFees LP_ServiceFees
## Min. : 0.0 Min. : -2.35 Min. :-664.87
## 1st Qu.: 500.9 1st Qu.: 274.87 1st Qu.: -73.18
## Median : 1587.5 Median : 700.84 Median : -34.44
## Mean : 3105.5 Mean : 1077.54 Mean : -54.73
## 3rd Qu.: 4000.0 3rd Qu.: 1458.54 3rd Qu.: -13.92
## Max. :35000.0 Max. :15617.03 Max. : 32.06
##
## LP_CollectionFees LP_GrossPrincipalLoss LP_NetPrincipalLoss
## Min. :-9274.75 Min. : -94.2 Min. : -954.5
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.0
## Median : 0.00 Median : 0.0 Median : 0.0
## Mean : -14.24 Mean : 700.4 Mean : 681.4
## 3rd Qu.: 0.00 3rd Qu.: 0.0 3rd Qu.: 0.0
## Max. : 0.00 Max. :25000.0 Max. :25000.0
##
## LP_NonPrincipalRecoverypayments PercentFunded Recommendations
## Min. : 0.00 Min. :0.7000 Min. : 0.00000
## 1st Qu.: 0.00 1st Qu.:1.0000 1st Qu.: 0.00000
## Median : 0.00 Median :1.0000 Median : 0.00000
## Mean : 25.14 Mean :0.9986 Mean : 0.04803
## 3rd Qu.: 0.00 3rd Qu.:1.0000 3rd Qu.: 0.00000
## Max. :21117.90 Max. :1.0125 Max. :39.00000
##
## InvestmentFromFriendsCount InvestmentFromFriendsAmount Investors
## Min. : 0.00000 Min. : 0.00 Min. : 1.00
## 1st Qu.: 0.00000 1st Qu.: 0.00 1st Qu.: 2.00
## Median : 0.00000 Median : 0.00 Median : 44.00
## Mean : 0.02346 Mean : 16.55 Mean : 80.48
## 3rd Qu.: 0.00000 3rd Qu.: 0.00 3rd Qu.: 115.00
## Max. :33.00000 Max. :25000.00 Max. :1189.00
##
</code></pre>
<p>Some data summaries and reading online reveals that Prosper changed their API in
the latter half of 2009. In order to have the most consistant dataset, I exclude
data from before this period. I believe the most interesting comparison with
ListingCategory is the IncomeRange of the inviduals asking for the loan</p>
<pre><code class="r">table(dt[ListingCreationDate > "2009-07-01"]$ListingCategory..numeric., dt[ListingCreationDate > "2009-07-01"]$IncomeRange)
</code></pre>
<pre><code>##
## Not employed $0 $1-24,999 $25,000-49,999
## Debt Consolidation 247 14 2339 14817
## Home Improvement 29 3 262 1682
## Business 87 16 321 1481
## Personal Loan 0 0 0 0
## Student Use 19 1 77 90
## Auto 24 0 272 885
## Other 140 10 857 2953
## Baby&Adoption 1 0 5 54
## Boat 1 0 6 17
## Cosmetic Procedure 1 0 9 36
## Engagement Ring 4 0 7 56
## Green Loans 2 0 5 15
## Household Expenses 56 0 166 641
## Large Purchases 6 0 56 236
## Medical/Dental 16 1 92 484
## Motorcycle 0 0 38 94
## RV 0 0 6 11
## Taxes 4 0 36 163
## Vacation 8 0 59 239
## Wedding Loans 3 0 41 213
##
## $50,000-74,999 $75,000-99,999 $100,000+ Not displayed
## Debt Consolidation 16721 9417 9625 0
## Home Improvement 1989 1229 1607 0
## Business 1417 885 1091 0
## Personal Loan 0 0 0 0
## Student Use 55 17 15 0
## Auto 604 258 194 0
## Other 2545 1406 1307 0
## Baby&Adoption 59 28 52 0
## Boat 28 17 16 0
## Cosmetic Procedure 28 13 4 0
## Engagement Ring 65 35 50 0
## Green Loans 17 10 10 0
## Household Expenses 556 304 273 0
## Large Purchases 247 136 195 0
## Medical/Dental 441 248 240 0
## Motorcycle 99 32 41 0
## RV 18 7 10 0
## Taxes 250 180 252 0
## Vacation 227 141 94 0
## Wedding Loans 255 134 125 0
</code></pre>
<pre><code class="r">ggplot(dt[ListingCreationDate > "2009-07-01"], aes(ListingCategory..numeric., fill = IncomeRange)) + geom_bar() + coord_flip()
</code></pre>
<p><img src="" alt="plot of chunk summary1"/></p>
<pre><code class="r">setnames(dt, "ListingCategory..numeric.", "ListingCategory")
</code></pre>
<p>merge income ranges and summarize</p>
<pre><code class="r">tmp = dt[ListingCreationDate > "2009-07-01", list(Total = .N), by = list(ListingCategory, IncomeRange)]
out = dcast(tmp, ListingCategory ~ IncomeRange, value.var = "Total", fill = 0)
out$LowIncome = out$"Not employed" + out$"$0" + out$"$1-24,999"
out$MiddleIncome = out$"$25,000-49,999" + out$"$50,000-74,999"
out$HighIncome = out$"$75,000-99,999" + out$"$100,000+"
out[, Total := LowIncome + MiddleIncome + HighIncome]
out[, LowIncomePct := round(LowIncome / Total, 3)]
out[, MiddleIncomePct := round(MiddleIncome / Total, 3)]
out[, HighIncomePct := 1 - MiddleIncomePct - LowIncomePct] # so all sum to 1
out = out[ListingCategory != "Other"] # remove NA and "Other" since uninformative
setorder(out, HighIncomePct)
out$ListingCategory = factor(out$ListingCategory, levels = as.character(out$ListingCategory)) # reorder
ggplot(melt(out, id.vars = "ListingCategory", measure.vars = c("LowIncomePct", "MiddleIncomePct", "HighIncomePct")),
aes(ListingCategory, value, fill = variable)) + geom_bar(stat = 'identity') + coord_flip()
</code></pre>
<p><img src="" alt="plot of chunk summary2"/></p>
<p>write out the data</p>
<pre><code class="r"># cleanup
out = out[, .(ListingCategory, LowIncomePct, MiddleIncomePct, HighIncomePct, Total)]
setnames(out, c("ListingCategory", "LowIncome <$25k", "MiddleIncome", "HighIncome >$75k", "Total"))
write.csv(out, file = "data.csv", row.names = FALSE)
</code></pre>
<h1>Summary</h1>
<p>Thinking from a perspective of an affliate advertiser, my goal is to identify
target audiences that might be interested in lending using Prosper based off
historical loan data. To achieve this, I identified two interesting variables
in the Prosper dataset: ListingCategory and IncomeRange. The former provides
good sites to place ads for Prosper whereas the latter can be used to filter
the customers to target these advertisements for.</p>
<p>Based on the data, I found that the following class of individuals
would be a good target for Prosper ads:</p>
<ul>
<li>Low income students</li>
<li>Middle income looking for cosmetic procedures</li>
<li>High income in months before taxes being due</li>
</ul>
<p>These three categories are specific to each income category. Sorting by
high income: Taxes have the highest percentage while Cosmetic Procedure
and Student Use are the lowest. Sorting by middle income: Cosmetic Procedure
had the highest percentage while Student Use and Taxes were the lowest.
Sorting by low income: Student Use by far had the highest percentage
with Taxes near the bottom and Cosmetic Procedure in the middle.</p>
<h1>Design</h1>
<p>I used a proportional stacked bar chart to show the number of loans for a
given category and IncomeRange. The IncomeRange is encoded using different
colors in a gradient to show the ordinal nature of this variable.</p>
<p>For interactive component, I added in a mouseover tooltip on the Y-axis to
allow the user to see how many elements there were total. In addition, another
mouseover showed the percentage of every income class.</p>
<p>After collecting feedback on the initial version, I realized that I needed a
better mechanism to emphasize the differences between the income classes. I added
a dropdown menu to sort by different income classes to emphasize the differences
between income classes. Additionally, I bolded the categories of interest and
I sorted by Low income by default since “Student Use” had the most striking
example of percentage overrepresentation by income class.</p>
<h1>Feedback</h1>
<p>I asked the following questions and wrote down the respones below:</p>
<ul>
<li>What do you notice in the visualization?</li>
<li>What questions do you have about the data?</li>
<li>What relationships do you notice?</li>
<li>What do you think is the main takeaway from this visualization?</li>
<li>Is there something you don’t understand in the graphic?</li>
</ul>
<h2>Feedback 1 - Lynn</h2>
<p>Poor students are one of the highest proportions.</p>
<p>Could you sort by the other income classes too (low and middle)?</p>
<p>Middle income seems to dominate Cosmetic Procedure and transportation related
(Auto and Motorcycle).</p>
<p>Poor students would be a good target for Prosper advertisements.</p>
<p>I understand the graphic.</p>
<h2>Feedback 2 - Jamie</h2>
<p>Middle income has the largest % of loans</p>
<p>Could you also show the dollar amount of each loan?</p>
<p>Low income have disporportionately high student loans</p>
<p>I understand the graphic.</p>
<h2>Feedback 3 - Jo</h2>
<p>The difference between what poor people ask for loans on and what rich people
ask for loans on is quite big.</p>
<p>Could you sort by low income instead of high?</p>
<p>Why students getting loans from Prosper rather than regular student loans.</p>
<p>Low income is more likely to use prosper for student loans. Middle income for
status symbol items like beauty, and cars. High income for home improvement or taxes.</p>
<p>I understand the graphic. </p>
<h1>Resources</h1>
<p><a href="https://developers.prosper.com/docs/investor/loans-api/">https://developers.prosper.com/docs/investor/loans-api/</a></p>
<p><a href="http://square.github.io/intro-to-d3/">http://square.github.io/intro-to-d3/</a></p>
<p><a href="https://github.com/d3/d3/wiki/">https://github.com/d3/d3/wiki/</a></p>
<p><a href="https://bl.ocks.org/mbostock/3886208">https://bl.ocks.org/mbostock/3886208</a> </p>
<p><a href="https://github.com/d3/d3/blob/master/API.md">https://github.com/d3/d3/blob/master/API.md</a></p>
<p>various stackoverflow and plnkr/jsfiddle/bl.ocks examples</p>
</body>
</html>