forked from huawei-noah/Efficient-AI-Backbones
-
Notifications
You must be signed in to change notification settings - Fork 0
/
imagenet_utils.py
executable file
·342 lines (299 loc) · 13.7 KB
/
imagenet_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# 2020.02.26-Changed for utils for testing GhostNet on ImageNet
# Huawei Technologies Co., Ltd. <foss@huawei.com>
# modified from https://github.com/tensorpack/tensorpack/blob/master/examples/ImageNetModels/imagenet_utils.py
import cv2
import numpy as np
import multiprocessing
import tensorflow as tf
from tensorflow.python.framework import ops
from abc import abstractmethod
from tensorpack import imgaug, dataset, ModelDesc
from tensorpack.dataflow import (
AugmentImageComponent, PrefetchDataZMQ, MapData,
BatchData, MultiThreadMapData)
from tensorpack.predict import PredictConfig, SimpleDatasetPredictor
from tensorpack.utils.stats import RatioCounter
from tensorpack.models import regularize_cost
from tensorpack.tfutils.summary import add_moving_summary
from tensorpack.utils import logger
class GoogleNetResize(imgaug.ImageAugmentor):
"""
crop 8%~100% of the original image
See `Going Deeper with Convolutions` by Google.
"""
def __init__(self, crop_area_fraction=0.08,
aspect_ratio_low=0.75, aspect_ratio_high=1.333,
target_shape=224):
self._init(locals())
def _augment(self, img, _):
h, w = img.shape[:2]
area = h * w
for _ in range(10):
targetArea = self.rng.uniform(self.crop_area_fraction, 1.0) * area
aspectR = self.rng.uniform(self.aspect_ratio_low, self.aspect_ratio_high)
ww = int(np.sqrt(targetArea * aspectR) + 0.5)
hh = int(np.sqrt(targetArea / aspectR) + 0.5)
if self.rng.uniform() < 0.5:
ww, hh = hh, ww
if hh <= h and ww <= w:
x1 = 0 if w == ww else self.rng.randint(0, w - ww)
y1 = 0 if h == hh else self.rng.randint(0, h - hh)
out = img[y1:y1 + hh, x1:x1 + ww]
out = cv2.resize(out, (self.target_shape, self.target_shape), interpolation=cv2.INTER_CUBIC)
return out
out = imgaug.ResizeShortestEdge(self.target_shape, interp=cv2.INTER_CUBIC).augment(img)
out = imgaug.CenterCrop(self.target_shape).augment(out)
return out
def fbresnet_augmentor(isTrain):
"""
Augmentor used in fb.resnet.torch, for BGR images in range [0,255].
"""
if isTrain:
augmentors = [
GoogleNetResize(),
# It's OK to remove the following augs if your CPU is not fast enough.
# Removing brightness/contrast/saturation does not have a significant effect on accuracy.
# Removing lighting leads to a tiny drop in accuracy.
imgaug.RandomOrderAug(
[imgaug.BrightnessScale((0.6, 1.4), clip=False),
imgaug.Contrast((0.6, 1.4), clip=False),
imgaug.Saturation(0.4, rgb=False),
# rgb-bgr conversion for the constants copied from fb.resnet.torch
imgaug.Lighting(0.1,
eigval=np.asarray(
[0.2175, 0.0188, 0.0045][::-1]) * 255.0,
eigvec=np.array(
[[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203]],
dtype='float32')[::-1, ::-1]
)]),
imgaug.Flip(horiz=True),
]
else:
augmentors = [
imgaug.ResizeShortestEdge(256, cv2.INTER_CUBIC),
imgaug.CenterCrop((224, 224)),
]
return augmentors
def get_imagenet_dataflow(
datadir, name, batch_size,
augmentors, meta_dir=None, parallel=None):
"""
See explanations in the tutorial:
http://tensorpack.readthedocs.io/en/latest/tutorial/efficient-dataflow.html
"""
assert name in ['train', 'val', 'test']
assert datadir is not None
assert isinstance(augmentors, list)
isTrain = name == 'train'
#parallel = 1
if parallel is None:
parallel = min(40, multiprocessing.cpu_count() // 2) # assuming hyperthreading
if isTrain:
ds = dataset.ILSVRC12(datadir, name, meta_dir=meta_dir, shuffle=True)
ds = AugmentImageComponent(ds, augmentors, copy=False)
if parallel < 16:
logger.warn("DataFlow may become the bottleneck when too few processes are used.")
ds = PrefetchDataZMQ(ds, parallel)
ds = BatchData(ds, batch_size, remainder=False)
else:
ds = dataset.ILSVRC12Files(datadir, name, meta_dir= meta_dir, shuffle=False)
aug = imgaug.AugmentorList(augmentors)
def mapf(dp):
fname, cls = dp
im = cv2.imread(fname, cv2.IMREAD_COLOR)
im = aug.augment(im)
return im, cls
ds = MultiThreadMapData(ds, parallel, mapf, buffer_size=2000, strict=True)
ds = BatchData(ds, batch_size, remainder=True)
ds = PrefetchDataZMQ(ds, 1)
return ds
def eval_on_ILSVRC12(model, sessinit, dataflow):
pred_config = PredictConfig(
model=model,
session_init=sessinit,
input_names=['input', 'label'],
output_names=['wrong-top1', 'wrong-top5']
)
pred = SimpleDatasetPredictor(pred_config, dataflow)
acc1, acc5 = RatioCounter(), RatioCounter()
for top1, top5 in pred.get_result():
batch_size = top1.shape[0]
acc1.feed(top1.sum(), batch_size)
acc5.feed(top5.sum(), batch_size)
print("Top1 Error: {}".format(acc1.ratio))
print("Top5 Error: {}".format(acc5.ratio))
class ImageNetModel(ModelDesc):
image_shape = 224
lr = 0.1
"""
uint8 instead of float32 is used as input type to reduce copy overhead.
It might hurt the performance a liiiitle bit.
The pretrained models were trained with float32.
"""
image_dtype = tf.float32
"""
Either 'NCHW' or 'NHWC'
"""
data_format = 'NCHW'
"""
Whether the image is BGR or RGB. If using DataFlow, then it should be BGR.
"""
image_bgr = True
weight_decay = 4e-5
label_smoothing = 0.0
"""
To apply on normalization parameters, use '.*/gamma|.*/beta'
to apply on depthwise, add '.*/DW'
"""
weight_decay_pattern = '.*/W|.*/M|.*/WB|.*/weights'
"""
Scale the loss, for whatever reasons (e.g., gradient averaging, fp16 training, etc)
"""
loss_scale = 1.
def inputs(self):
labels = tf.placeholder(tf.int32, [None], 'label')
return [tf.placeholder(self.image_dtype, [None, self.image_shape, self.image_shape, 3], 'input'),
labels]
def build_graph(self, image, label):
image = ImageNetModel.image_preprocess(image, bgr=self.image_bgr)
assert self.data_format in ['NCHW', 'NHWC']
if self.data_format == 'NCHW':
image = tf.transpose(image, [0, 3, 1, 2])
logits = self.get_logits(image)
print('self.label_smoothing', self.label_smoothing)
loss = ImageNetModel.compute_loss_and_error(logits, label, self.label_smoothing)
if self.weight_decay > 0:
wd_loss = regularize_cost(self.weight_decay_pattern,
tf.contrib.layers.l2_regularizer(self.weight_decay),
name='l2_regularize_loss')
add_moving_summary(loss, wd_loss)
total_cost = tf.add_n([loss, wd_loss], name='cost')
else:
total_cost = tf.identity(loss, name='cost')
add_moving_summary(total_cost)
if self.loss_scale != 1.:
logger.info("Scaling the total loss by {} ...".format(self.loss_scale))
return total_cost * self.loss_scale
else:
return total_cost
@abstractmethod
def get_logits(self, image):
"""
Args:
image: 4D tensor of ``self.input_shape`` in ``self.data_format``
Returns:
Nx#class logits
"""
def optimizer(self):
lr = tf.get_variable('learning_rate', initializer=self.lr, trainable=False)
tf.summary.scalar('learning_rate-summary', lr)
return tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True)
#return tf.train.RMSPropOptimizer(lr, momentum=0.9) #tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True)
@staticmethod
def image_preprocess(image, bgr=True):
with tf.name_scope('image_preprocess'):
if image.dtype.base_dtype != tf.float32:
image = tf.cast(image, tf.float32)
image = image * (1.0 / 255)
mean = [0.485, 0.456, 0.406] # rgb
std = [0.229, 0.224, 0.225]
if bgr:
mean = mean[::-1]
std = std[::-1]
image_mean = tf.constant(mean, dtype=tf.float32)
image_std = tf.constant(std, dtype=tf.float32)
image = (image - image_mean) / image_std
return image
@staticmethod
def compute_loss_and_error(logits, label, label_smoothing):
loss = sparse_softmax_cross_entropy(
logits=logits, labels=label,
label_smoothing = label_smoothing,
weights=1.0)
loss = tf.reduce_mean(loss, name='xentropy-loss')
def prediction_incorrect(logits, label, topk=1, name='incorrect_vector'):
with tf.name_scope('prediction_incorrect'):
x = tf.logical_not(tf.nn.in_top_k(logits, label, topk))
return tf.cast(x, tf.float32, name=name)
if label.shape.ndims > 1:
label = tf.cast(tf.argmax(label, axis=1), tf.int32)
wrong = prediction_incorrect(logits, label, 1, name='wrong-top1')
add_moving_summary(tf.reduce_mean(wrong, name='train-error-top1'))
wrong = prediction_incorrect(logits, label, 5, name='wrong-top5')
add_moving_summary(tf.reduce_mean(wrong, name='train-error-top5'))
return loss
def sparse_softmax_cross_entropy(
labels,
logits,
weights=1.0,
label_smoothing=0.0,
scope=None,
loss_collection=ops.GraphKeys.LOSSES,
reduction=tf.losses.Reduction.SUM_BY_NONZERO_WEIGHTS):
"""Cross-entropy loss using `tf.nn.sparse_softmax_cross_entropy_with_logits`.
`weights` acts as a coefficient for the loss. If a scalar is provided,
then the loss is simply scaled by the given value. If `weights` is a
tensor of shape [`batch_size`], then the loss weights apply to each
corresponding sample.
Args:
labels: `Tensor` of shape `[d_0, d_1, ..., d_{r-1}]` (where `r` is rank of
`labels` and result) and dtype `int32` or `int64`. Each entry in `labels`
must be an index in `[0, num_classes)`. Other values will raise an
exception when this op is run on CPU, and return `NaN` for corresponding
loss and gradient rows on GPU.
logits: Unscaled log probabilities of shape
`[d_0, d_1, ..., d_{r-1}, num_classes]` and dtype `float32` or `float64`.
weights: Coefficients for the loss. This must be scalar or broadcastable to
`labels` (i.e. same rank and each dimension is either 1 or the same).
scope: the scope for the operations performed in computing the loss.
loss_collection: collection to which the loss will be added.
reduction: Type of reduction to apply to loss.
Returns:
Weighted loss `Tensor` of the same type as `logits`. If `reduction` is
`NONE`, this has the same shape as `labels`; otherwise, it is scalar.
Raises:
ValueError: If the shapes of `logits`, `labels`, and `weights` are
incompatible, or if any of them are None.
"""
if labels is None:
raise ValueError("labels must not be None.")
if logits is None:
raise ValueError("logits must not be None.")
with tf.name_scope(scope, "sparse_softmax_cross_entropy_loss",
(logits, labels, weights)) as scope:
if labels.shape.ndims == 1:
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name="xentropy")
else:
loss = tf.nn.softmax_cross_entropy_with_logits(
labels=labels, logits=logits, name="xentropy")
loss = tf.losses.compute_weighted_loss(
loss, weights, scope, loss_collection, reduction=reduction)
# Label smoothing.
smooth_loss = 0.
if label_smoothing > 0:
# Label smoothing loss: sum of logits * weight.
loss = tf.scalar_mul(1. - label_smoothing, loss)
aux_log_softmax = -tf.nn.log_softmax(logits)
smooth_loss = tf.losses.compute_weighted_loss(
aux_log_softmax, label_smoothing * weights,
'label_smoothing', loss_collection, reduction=reduction)
return loss + smooth_loss
if __name__ == '__main__':
import argparse
from tensorpack.dataflow import TestDataSpeed
parser = argparse.ArgumentParser()
parser.add_argument('--data', required=True)
parser.add_argument('--batch', type=int, default=32)
parser.add_argument('--aug', choices=['train', 'val'], default='val')
args = parser.parse_args()
if args.aug == 'val':
augs = fbresnet_augmentor(False)
elif args.aug == 'train':
augs = fbresnet_augmentor(True)
df = get_imagenet_dataflow(
args.data, 'train', args.batch, augs)
# For val augmentor, Should get >100 it/s (i.e. 3k im/s) here on a decent E5 server.
TestDataSpeed(df).start()