forked from PeterL1n/RobustVideoMatting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
329 lines (283 loc) · 13.9 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
"""
python inference.py \
--variant mobilenetv3 \
--checkpoint "CHECKPOINT" \
--device cuda \
--input-source "input.mp4" \
--output-type video \
--output-composition "composition.mp4" \
--output-alpha "alpha.mp4" \
--output-foreground "foreground.mp4" \
--output-video-mbps 4 \
--seq-chunk 1
"""
import torch
import os
from torch.utils.data import DataLoader
from torchvision import transforms
from typing import Optional, Tuple
from tqdm.auto import tqdm
import numpy as np
import cv2
import argparse
from model import MattingNetwork
import torch.nn.functional as F
from inference_utils import VideoReader, VideoWriter, ImageSequenceReader, ImageSequenceWriter
def convert_video(model,
input_source: any,
input_resize: Optional[Tuple[int, int]] = None,
downsample_ratio: Optional[float] = None,
output_type: str = 'video',
output_composition: Optional[str] = None,
output_alpha: Optional[str] = None,
output_foreground: Optional[str] = None,
output_bg_image: Optional[str] = None,
output_video_mbps: Optional[float] = None,
output_width: Optional[int] = None,
output_height: Optional[int] = None,
seq_chunk: int = 1,
num_workers: int = 0,
progress: bool = True,
alpha: bool = False,
device: Optional[str] = None,
dtype: Optional[torch.dtype] = None):
"""
Args:
input_source:A video file, or an image sequence directory. Images must be sorted in accending order, support png and jpg.
input_resize: If provided, the input are first resized to (w, h).
downsample_ratio: The model's downsample_ratio hyperparameter. If not provided, model automatically set one.
output_type: Options: ["video", "png_sequence"].
output_composition:
The composition output path. File path if output_type == 'video'. Directory path if output_type == 'png_sequence'.
If output_type == 'video', the composition has green screen background.
If output_type == 'png_sequence'. the composition is RGBA png images.
output_alpha: The alpha output from the model.
output_foreground: The foreground output from the model.
output_bg_image: The background image for output from the model.
output_width: output width.
output_height: output height.
seq_chunk: Number of frames to process at once. Increase it for better parallelism.
num_workers: PyTorch's DataLoader workers. Only use >0 for image input.
progress: Show progress bar.
device: Only need to manually provide if model is a TorchScript freezed model.
dtype: Only need to manually provide if model is a TorchScript freezed model.
"""
assert downsample_ratio is None or (downsample_ratio > 0 and downsample_ratio <= 1), 'Downsample ratio must be between 0 (exclusive) and 1 (inclusive).'
assert any([output_composition, output_alpha, output_foreground]), 'Must provide at least one output.'
assert output_type in ['video', 'png', 'jpg'], 'Only support "video" and "png_sequence" output modes.'
assert seq_chunk >= 1, 'Sequence chunk must be >= 1'
assert num_workers >= 0, 'Number of workers must be >= 0'
# Initialize transform
if input_resize is not None:
transform = transforms.Compose([
transforms.Resize(input_resize[::-1]),
transforms.ToTensor()
])
else:
transform = transforms.ToTensor()
# Initialize reader
if isinstance(input_source, (np.ndarray, np.generic) ):
pass
if os.path.isfile(input_source):
source = VideoReader(input_source, transform)
else:
source = ImageSequenceReader(input_source, transform)
reader = DataLoader(source, batch_size=seq_chunk, pin_memory=True, num_workers=num_workers)
# Initialize writers
if output_type == 'video':
frame_rate = source.frame_rate if isinstance(source, VideoReader) else 30
output_video_mbps = 1 if output_video_mbps is None else output_video_mbps
if output_composition is not None:
writer_com = VideoWriter(
path=output_composition,
frame_rate=frame_rate,
bit_rate=int(output_video_mbps * 1000000),
alpha=alpha)
if output_alpha is not None:
writer_pha = VideoWriter(
path=output_alpha,
frame_rate=frame_rate,
bit_rate=int(output_video_mbps * 1000000))
if output_foreground is not None:
writer_fgr = VideoWriter(
path=output_foreground,
frame_rate=frame_rate,
bit_rate=int(output_video_mbps * 1000000))
else:
if output_composition is not None:
writer_com = ImageSequenceWriter(output_composition, output_type)
if output_alpha is not None:
writer_pha = ImageSequenceWriter(output_alpha, output_type)
if output_foreground is not None:
writer_fgr = ImageSequenceWriter(output_foreground, output_type)
# Inference
model = model.eval()
if device is None or dtype is None:
param = next(model.parameters())
dtype = param.dtype
device = param.device
bg_image_cv = None
if output_bg_image:
bg_image_cv = load_background_image(output_bg_image)
source_width, source_height = source[0].shape[1:]
print(f"input source shape {source_width}*{source_height}")
if not output_width and not output_height:
# if bg_image_cv is not None:
# output_width, output_height = bg_image_cv.shape[:2]
# else:
# output_width, output_height =source_width, source_height
output_width, output_height =source_width, source_height
# if (output_composition is not None) and (output_type == 'video'):
# bgr = torch.tensor([120, 255, 155], device=device, dtype=dtype).div(255).view(1, 1, 3, 1, 1)
# else:
# bgr = torch.tensor([120, 255, 155], device=device, dtype=dtype).div(255).view(1, 1, 3, 1, 1)
if not output_bg_image:
rgb = [120, 255, 155]
# rgb = [22, 255, 39]
bgr = torch.tensor(rgb, device=device, dtype=dtype).div(255).view(1, 1, 3, 1, 1)
print(f"bgr use [120, 255, 155], shape: {bgr.shape}, target: {output_width}*{output_height}")
else:
# h, w = get_video_size(input_source)
# h, w = source[0].shape[1:]
bgr = load_background_image_bgr(bg_image_cv, output_width, output_height, device, dtype)
print(f"bgr use background image, shape: {bgr.shape}, target: {output_width}*{output_height}")
p2d = None
if output_height > source_height or output_width > source_width:
left = int((output_height - source_height)/2)
right = int(output_height - source_height - left)
up = int((output_width - source_width)/2)
down = int(output_width - source_width - up)
p2d = (left, right, up, down)
print(f"source image/video small than output, resize from {source_height}*{output_width} to {output_height}*{output_width}, p2d: {p2d}")
try:
with torch.no_grad():
bar = tqdm(total=len(source), disable=not progress, dynamic_ncols=True)
rec = [None] * 4
for src in reader:
if downsample_ratio is None:
downsample_ratio = auto_downsample_ratio(*src.shape[2:])
src = src.to(device, dtype, non_blocking=True).unsqueeze(0) # [B, T, C, H, W]
fgr, pha, *rec = model(src, *rec, downsample_ratio)
# print(f"###{fgr.shape}")
# fgr_height, fgr_width = fgr.shape[3:]
fgr_width, fgr_height = fgr.shape[3:]
if p2d is not None:
fgr = F.pad(fgr, p2d, 'constant', 0)
pha = F.pad(pha, p2d, 'constant', 0)
# print(f"padded: fgr: {fgr.shape}, pha: {pha.shape}, bgr: {bgr.shape}, pad: {left} {right} {up} {down}")
if output_foreground is not None:
writer_fgr.write(fgr[0])
if output_alpha is not None:
writer_pha.write(pha[0])
if output_composition is not None:
if output_type == 'video' and not alpha:
com = fgr * pha + bgr * (1 - pha)
elif output_type == 'png':
fgr = fgr * pha.gt(0)
com = torch.cat([fgr, pha], dim=-3)
else:
com = fgr * pha # + bgr * (1 - pha)
writer_com.write(com[0], pha[0])
bar.update(src.size(1))
finally:
# Clean up
if output_composition is not None:
writer_com.close()
if output_alpha is not None:
writer_pha.close()
if output_foreground is not None:
writer_fgr.close()
def get_video_size(input_video_path):
vid = cv2.VideoCapture(input_video_path)
height = vid.get(cv2.CAP_PROP_FRAME_HEIGHT)
width = vid.get(cv2.CAP_PROP_FRAME_WIDTH)
return height, width
def load_background_image(background_image_path):
cv_image = cv2.imread(background_image_path)
print(f"load_background_image shape {cv_image.shape}, {cv_image[0,0]}")
return cv_image
def load_background_image_bgr(bg_image_cv, height, width, device, dtype):
height, width = int(height), int(width)
img_height, img_width = bg_image_cv.shape[:2]
img_scale_height, img_scale_width = height, width
if img_height / img_width > height / width:
img_scale_height = img_height * img_scale_width / img_width
else:
img_scale_width = img_width * img_scale_height / img_height
img_scale_height, img_scale_width = int(img_scale_height), int(img_scale_width)
print(f"load_background_image resize from {bg_image_cv.shape} to {img_scale_height}*{img_scale_width}, target: {height}*{width} {bg_image_cv[0,0]}")
bg_image_cv = cv2.cvtColor(bg_image_cv, cv2.COLOR_BGR2RGB)
bg_image_cv = cv2.resize(bg_image_cv, (img_scale_width, img_scale_height))
start_height = int((img_scale_height-height)/2)
start_width = int((img_scale_width-width)/2)
bg_image_cv = bg_image_cv[start_height:start_height+height,start_width:start_width+width]
print(f"load_background_image cut from {img_scale_height}*{img_scale_width} to {bg_image_cv.shape} {bg_image_cv[0,0]}")
# # show image
# cv2.imshow('cv_image', cv_image)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# rgb_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
# # 将图像转换为PyTorch张量
# tensor_image = torch.from_numpy(rgb_image.transpose((2, 0, 1))).float()
# tensor = tensor_image.to(device, dtype)
transform = transforms.Compose([
transforms.ToTensor()
])
tensor = transform(bg_image_cv).to(device, dtype) #.permute(0, 1, 4, 2, 3)
print(f"load_background_image tensor: {tensor.shape} {tensor[:,0,0]}")
bgr = tensor.view(1, 1, 3, height, width)
print(f"load_background_image bgr: {bgr.shape} {bgr[0,0,:,0,0]}")
return bgr
def auto_downsample_ratio(h, w):
"""
Automatically find a downsample ratio so that the largest side of the resolution be 512px.
"""
return min(512 / max(h, w), 1)
class Converter:
def __init__(self, variant: str, checkpoint: str, device: str):
self.model = MattingNetwork(variant).eval().to(device)
self.model.load_state_dict(torch.load(checkpoint, map_location=device))
self.model = torch.jit.script(self.model)
self.model = torch.jit.freeze(self.model)
self.device = device
def convert(self, *args, **kwargs):
convert_video(self.model, device=self.device, dtype=torch.float32, *args, **kwargs)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--variant', type=str, required=True, choices=['mobilenetv3', 'resnet50'])
parser.add_argument('--checkpoint', type=str, required=True)
parser.add_argument('--device', type=str, required=True)
parser.add_argument('--input-source', type=str, required=True)
parser.add_argument('--input-resize', type=int, default=None, nargs=2)
parser.add_argument('--downsample-ratio', type=float)
parser.add_argument('--output-composition', type=str)
parser.add_argument('--output-alpha', type=str)
parser.add_argument('--output-foreground', type=str)
parser.add_argument('--output-bg-image', type=str)
parser.add_argument('--output-type', type=str, required=True, choices=['video', 'png_sequence'])
parser.add_argument('--output-video-mbps', type=int, default=1)
parser.add_argument('--output-height', type=int)
parser.add_argument('--output-width', type=int)
parser.add_argument('--seq-chunk', type=int, default=1)
parser.add_argument('--num-workers', type=int, default=0)
parser.add_argument('--disable-progress', action='store_true')
parser.add_argument('--alpha', default=False, action='store_true')
args = parser.parse_args()
converter = Converter(args.variant, args.checkpoint, args.device)
converter.convert(
input_source=args.input_source,
input_resize=args.input_resize,
downsample_ratio=args.downsample_ratio,
output_type=args.output_type,
output_composition=args.output_composition,
output_alpha=args.output_alpha,
alpha=args.alpha,
output_foreground=args.output_foreground,
output_bg_image=args.output_bg_image,
output_video_mbps=args.output_video_mbps,
output_width=args.output_width,
output_height=args.output_height,
seq_chunk=args.seq_chunk,
num_workers=args.num_workers,
progress=not args.disable_progress
)