Skip to content

Latest commit

 

History

History
54 lines (46 loc) · 1.73 KB

README.md

File metadata and controls

54 lines (46 loc) · 1.73 KB

AV-FDTI: Audio-visual fusion for drone threat identification

banner

This repo presents the codes for AV-FDTI: Audio-visual fusion for drone threat identification, which aims to fuse audio and vision data for effective drone classification adn localization

Dependencies

  • PyTorch: pytorch, torchaudio, torchvision
  • OpenCV: opencv-python
  • Utilities:
    • tqdm
    • scikit-learn
    • seaborn
    • torchsummary

Train

Go to config/train_config.py to modify the hyperparameters, and then run:

$ python antidrone_training_multihead.py

Test

Go to config/test_config.py to modify the hyperparameters, and then run:

$ python test.py

Note

The data for the experiments are from MMAUD datasets, the corresponding paper can be found here

Cite

@article{yang2024av,
  title={AV-FDTI: Audio-visual fusion for drone threat identification},
  author={Yang, Yizhuo and Yuan, Shenghai and Yang, Jianfei and Nguyen, Thien Hoang and Cao, Muqing and Nguyen, Thien-Minh and Wang, Han and Xie, Lihua},
  journal={Journal of Automation and Intelligence},
  volume={3},
  number={3},
  pages={144--151},
  year={2024},
  publisher={Elsevier}
}

@article{yuan2024mmaud,
  title={MMAUD: A Comprehensive Multi-Modal Anti-UAV Dataset for Modern Miniature Drone Threats},
  author={Yuan, Shenghai and Yang, Yizhuo and Nguyen, Thien Hoang and Nguyen, Thien-Minh and Yang, Jianfei and Liu, Fen and Li, Jianping and Wang, Han and Xie, Lihua},
  journal={arXiv preprint arXiv:2402.03706},
  year={2024}
}