-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathengine.py
709 lines (599 loc) · 31.1 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
import torch
import torch.distributed as dist
import time
import os
import numpy as np
import random
# ----------------- Extra Components -----------------
from utils import distributed_utils
from utils.misc import ModelEMA, CollateFunc, build_dataloader
from utils.misc import MetricLogger, SmoothedValue
from utils.vis_tools import vis_data
# ----------------- Evaluator Components -----------------
from evaluator.build import build_evluator
# ----------------- Optimizer & LrScheduler Components -----------------
from utils.solver.optimizer import build_optimizer
from utils.solver.lr_scheduler import build_lambda_lr_scheduler
# ----------------- Dataset Components -----------------
from dataset.build import build_dataset, build_transform
# ----------------------- Det trainers -----------------------
## Trainer for general YOLO series
class YoloTrainer(object):
def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
# ------------------- basic parameters -------------------
self.args = args
self.epoch = 0
self.best_map = -1.
self.device = device
self.criterion = criterion
self.world_size = world_size
self.grad_accumulate = args.grad_accumulate
self.clip_grad = 35
self.heavy_eval = False
# weak augmentatino stage
self.second_stage = False
self.second_stage_epoch = args.no_aug_epoch
# path to save model
self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
os.makedirs(self.path_to_save, exist_ok=True)
# ---------------------------- Hyperparameters refer to RTMDet ----------------------------
self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
# ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
self.data_cfg = data_cfg
self.model_cfg = model_cfg
self.trans_cfg = trans_cfg
# ---------------------------- Build Transform ----------------------------
self.train_transform, self.trans_cfg = build_transform(
args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
self.val_transform, _ = build_transform(
args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
# ---------------------------- Build Dataset & Dataloader ----------------------------
self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
# ---------------------------- Build Evaluator ----------------------------
self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
# ---------------------------- Build Grad. Scaler ----------------------------
self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
# ---------------------------- Build Optimizer ----------------------------
self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
self.optimizer, self.start_epoch = build_optimizer(self.optimizer_dict, model, args.resume)
# ---------------------------- Build LR Scheduler ----------------------------
self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
if self.args.resume and self.args.resume != 'None':
self.lr_scheduler.step()
# ---------------------------- Build Model-EMA ----------------------------
if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
print('Build ModelEMA ...')
self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
else:
self.model_ema = None
def train(self, model):
for epoch in range(self.start_epoch, self.args.max_epoch):
if self.args.distributed:
self.train_loader.batch_sampler.sampler.set_epoch(epoch)
# check second stage
if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
self.check_second_stage()
# save model of the last mosaic epoch
weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
checkpoint_path = os.path.join(self.path_to_save, weight_name)
print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
torch.save({'model': model.state_dict(),
'mAP': round(self.evaluator.map*100, 1),
'optimizer': self.optimizer.state_dict(),
'epoch': self.epoch,
'args': self.args},
checkpoint_path)
# train one epoch
self.epoch = epoch
self.train_one_epoch(model)
# eval one epoch
if self.heavy_eval:
model_eval = model.module if self.args.distributed else model
self.eval(model_eval)
else:
model_eval = model.module if self.args.distributed else model
if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
self.eval(model_eval)
if self.args.debug:
print("For debug mode, we only train 1 epoch")
break
def eval(self, model):
# chech model
model_eval = model if self.model_ema is None else self.model_ema.ema
if distributed_utils.is_main_process():
# check evaluator
if self.evaluator is None:
print('No evaluator ... save model and go on training.')
print('Saving state, epoch: {}'.format(self.epoch))
weight_name = '{}_no_eval.pth'.format(self.args.model)
checkpoint_path = os.path.join(self.path_to_save, weight_name)
torch.save({'model': model_eval.state_dict(),
'mAP': -1.,
'optimizer': self.optimizer.state_dict(),
'epoch': self.epoch,
'args': self.args},
checkpoint_path)
else:
print('eval ...')
# set eval mode
model_eval.trainable = False
model_eval.eval()
# evaluate
with torch.no_grad():
self.evaluator.evaluate(model_eval)
# save model
cur_map = self.evaluator.map
if cur_map > self.best_map:
# update best-map
self.best_map = cur_map
# save model
print('Saving state, epoch:', self.epoch)
weight_name = '{}_best.pth'.format(self.args.model)
checkpoint_path = os.path.join(self.path_to_save, weight_name)
torch.save({'model': model_eval.state_dict(),
'mAP': round(self.best_map*100, 1),
'optimizer': self.optimizer.state_dict(),
'epoch': self.epoch,
'args': self.args},
checkpoint_path)
# set train mode.
model_eval.trainable = True
model_eval.train()
if self.args.distributed:
# wait for all processes to synchronize
dist.barrier()
def train_one_epoch(self, model):
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
epoch_size = len(self.train_loader)
print_freq = 10
grad_norm = 0.0
# basic parameters
epoch_size = len(self.train_loader)
img_size = self.args.img_size
nw = epoch_size * self.args.wp_epoch
# Train one epoch
for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
ni = iter_i + self.epoch * epoch_size
# Warmup
if ni <= nw:
xi = [0, nw] # x interp
for j, x in enumerate(self.optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(
ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
# To device
images = images.to(self.device, non_blocking=True).float()
# Multi scale
if self.args.multi_scale:
images, targets, img_size = self.rescale_image_targets(
images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
else:
targets = self.refine_targets(targets, self.args.min_box_size)
# Visualize train targets
if self.args.vis_tgt:
vis_data(images*255, targets)
# Inference
with torch.cuda.amp.autocast(enabled=self.args.fp16):
outputs = model(images)
# Compute loss
loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
losses = loss_dict['losses']
# Grad Accumulate
if self.grad_accumulate > 1:
losses /= self.grad_accumulate
loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
# Backward
self.scaler.scale(losses).backward()
# Optimize
if ni % self.grad_accumulate == 0:
if self.clip_grad > 0:
# unscale gradients
self.scaler.unscale_(self.optimizer)
# clip gradients
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
# optimizer.step
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
# ema
if self.model_ema is not None:
self.model_ema.update(model)
# Update log
metric_logger.update(**loss_dict_reduced)
metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
metric_logger.update(grad_norm=grad_norm)
metric_logger.update(size=img_size)
if self.args.debug:
print("For debug mode, we only train 1 iteration")
break
# LR Schedule
self.lr_scheduler.step()
# Gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
def refine_targets(self, targets, min_box_size):
# rescale targets
for tgt in targets:
boxes = tgt["boxes"].clone()
labels = tgt["labels"].clone()
# refine tgt
tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
keep = (min_tgt_size >= min_box_size)
tgt["boxes"] = boxes[keep]
tgt["labels"] = labels[keep]
return targets
def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
"""
Deployed for Multi scale trick.
"""
if isinstance(stride, int):
max_stride = stride
elif isinstance(stride, list):
max_stride = max(stride)
# During training phase, the shape of input image is square.
old_img_size = images.shape[-1]
min_img_size = old_img_size * multi_scale_range[0]
max_img_size = old_img_size * multi_scale_range[1]
# Choose a new image size
new_img_size = random.randrange(min_img_size, max_img_size + max_stride, max_stride)
if new_img_size / old_img_size != 1:
# interpolate
images = torch.nn.functional.interpolate(
input=images,
size=new_img_size,
mode='bilinear',
align_corners=False)
# rescale targets
for tgt in targets:
boxes = tgt["boxes"].clone()
labels = tgt["labels"].clone()
boxes = torch.clamp(boxes, 0, old_img_size)
# rescale box
boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
# refine tgt
tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
keep = (min_tgt_size >= min_box_size)
tgt["boxes"] = boxes[keep]
tgt["labels"] = labels[keep]
return images, targets, new_img_size
def check_second_stage(self):
# set second stage
print('============== Second stage of Training ==============')
self.second_stage = True
# close mosaic augmentation
if self.train_loader.dataset.mosaic_prob > 0.:
print(' - Close < Mosaic Augmentation > ...')
self.train_loader.dataset.mosaic_prob = 0.
self.heavy_eval = True
# close mixup augmentation
if self.train_loader.dataset.mixup_prob > 0.:
print(' - Close < Mixup Augmentation > ...')
self.train_loader.dataset.mixup_prob = 0.
self.heavy_eval = True
# close rotation augmentation
if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
print(' - Close < degress of rotation > ...')
self.trans_cfg['degrees'] = 0.0
if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
print(' - Close < shear of rotation >...')
self.trans_cfg['shear'] = 0.0
if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
print(' - Close < perspective of rotation > ...')
self.trans_cfg['perspective'] = 0.0
# build a new transform for second stage
print(' - Rebuild transforms ...')
self.train_transform, self.trans_cfg = build_transform(
args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
self.train_loader.dataset.transform = self.train_transform
## Customed Trainer for YOLOX series
class YoloxTrainer(object):
def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
# ------------------- basic parameters -------------------
self.args = args
self.epoch = 0
self.best_map = -1.
self.device = device
self.criterion = criterion
self.world_size = world_size
self.grad_accumulate = args.grad_accumulate
self.no_aug_epoch = args.no_aug_epoch
self.heavy_eval = False
# weak augmentatino stage
self.second_stage = False
self.second_stage_epoch = args.no_aug_epoch
# path to save model
self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
os.makedirs(self.path_to_save, exist_ok=True)
# ---------------------------- Hyperparameters refer to YOLOX ----------------------------
self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
# ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
self.data_cfg = data_cfg
self.model_cfg = model_cfg
self.trans_cfg = trans_cfg
# ---------------------------- Build Transform ----------------------------
self.train_transform, self.trans_cfg = build_transform(
args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
self.val_transform, _ = build_transform(
args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
# ---------------------------- Build Dataset & Dataloader ----------------------------
self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
# ---------------------------- Build Evaluator ----------------------------
self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
# ---------------------------- Build Grad. Scaler ----------------------------
self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
# ---------------------------- Build Optimizer ----------------------------
self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
self.optimizer, self.start_epoch = build_optimizer(self.optimizer_dict, model, self.args.resume)
# ---------------------------- Build LR Scheduler ----------------------------
self.lr_scheduler, self.lf = build_lambda_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
if self.args.resume and self.args.resume != 'None':
self.lr_scheduler.step()
# ---------------------------- Build Model-EMA ----------------------------
if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
print('Build ModelEMA ...')
self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
else:
self.model_ema = None
def train(self, model):
for epoch in range(self.start_epoch, self.args.max_epoch):
if self.args.distributed:
self.train_loader.batch_sampler.sampler.set_epoch(epoch)
# check second stage
if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
self.check_second_stage()
# save model of the last mosaic epoch
weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
checkpoint_path = os.path.join(self.path_to_save, weight_name)
print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
torch.save({'model': model.state_dict(),
'mAP': round(self.evaluator.map*100, 1),
'optimizer': self.optimizer.state_dict(),
'epoch': self.epoch,
'args': self.args},
checkpoint_path)
# train one epoch
self.epoch = epoch
self.train_one_epoch(model)
# eval one epoch
if self.heavy_eval:
model_eval = model.module if self.args.distributed else model
self.eval(model_eval)
else:
model_eval = model.module if self.args.distributed else model
if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
self.eval(model_eval)
if self.args.debug:
print("For debug mode, we only train 1 epoch")
break
def eval(self, model):
# chech model
model_eval = model if self.model_ema is None else self.model_ema.ema
if distributed_utils.is_main_process():
# check evaluator
if self.evaluator is None:
print('No evaluator ... save model and go on training.')
print('Saving state, epoch: {}'.format(self.epoch))
weight_name = '{}_no_eval.pth'.format(self.args.model)
checkpoint_path = os.path.join(self.path_to_save, weight_name)
torch.save({'model': model_eval.state_dict(),
'mAP': -1.,
'optimizer': self.optimizer.state_dict(),
'epoch': self.epoch,
'args': self.args},
checkpoint_path)
else:
print('eval ...')
# set eval mode
model_eval.trainable = False
model_eval.eval()
# evaluate
with torch.no_grad():
self.evaluator.evaluate(model_eval)
# save model
cur_map = self.evaluator.map
if cur_map > self.best_map:
# update best-map
self.best_map = cur_map
# save model
print('Saving state, epoch:', self.epoch)
weight_name = '{}_best.pth'.format(self.args.model)
checkpoint_path = os.path.join(self.path_to_save, weight_name)
torch.save({'model': model_eval.state_dict(),
'mAP': round(self.best_map*100, 1),
'optimizer': self.optimizer.state_dict(),
'epoch': self.epoch,
'args': self.args},
checkpoint_path)
# set train mode.
model_eval.trainable = True
model_eval.train()
if self.args.distributed:
# wait for all processes to synchronize
dist.barrier()
def train_one_epoch(self, model):
# basic parameters
epoch_size = len(self.train_loader)
img_size = self.args.img_size
t0 = time.time()
nw = epoch_size * self.args.wp_epoch
# Train one epoch
for iter_i, (images, targets) in enumerate(self.train_loader):
ni = iter_i + self.epoch * epoch_size
# Warmup
if ni <= nw:
xi = [0, nw] # x interp
for j, x in enumerate(self.optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(
ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
# To device
images = images.to(self.device, non_blocking=True).float()
# Multi scale
if self.args.multi_scale and ni % 10 == 0:
images, targets, img_size = self.rescale_image_targets(
images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
else:
targets = self.refine_targets(targets, self.args.min_box_size)
# Visualize train targets
if self.args.vis_tgt:
vis_data(images*255, targets)
# Inference
with torch.cuda.amp.autocast(enabled=self.args.fp16):
outputs = model(images)
# Compute loss
loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
losses = loss_dict['losses']
# Grad Accu
if self.grad_accumulate > 1:
losses /= self.grad_accumulate
loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
# Backward
self.scaler.scale(losses).backward()
# Optimize
if ni % self.grad_accumulate == 0:
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
# ema
if self.model_ema is not None:
self.model_ema.update(model)
# Logs
if distributed_utils.is_main_process() and iter_i % 10 == 0:
t1 = time.time()
cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
# basic infor
log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
log += '[lr: {:.6f}]'.format(cur_lr[2])
# loss infor
for k in loss_dict_reduced.keys():
loss_val = loss_dict_reduced[k]
if k == 'losses':
loss_val *= self.grad_accumulate
log += '[{}: {:.2f}]'.format(k, loss_val)
# other infor
log += '[time: {:.2f}]'.format(t1 - t0)
log += '[size: {}]'.format(img_size)
# print log infor
print(log, flush=True)
t0 = time.time()
if self.args.debug:
print("For debug mode, we only train 1 iteration")
break
# LR Schedule
if not self.second_stage:
self.lr_scheduler.step()
def check_second_stage(self):
# set second stage
print('============== Second stage of Training ==============')
self.second_stage = True
self.heavy_eval = True
# close mosaic augmentation
if self.train_loader.dataset.mosaic_prob > 0.:
print(' - Close < Mosaic Augmentation > ...')
self.train_loader.dataset.mosaic_prob = 0.
# close mixup augmentation
if self.train_loader.dataset.mixup_prob > 0.:
print(' - Close < Mixup Augmentation > ...')
self.train_loader.dataset.mixup_prob = 0.
# close rotation augmentation
if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
print(' - Close < degress of rotation > ...')
self.trans_cfg['degrees'] = 0.0
if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
print(' - Close < shear of rotation >...')
self.trans_cfg['shear'] = 0.0
if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
print(' - Close < perspective of rotation > ...')
self.trans_cfg['perspective'] = 0.0
# close random affine
if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
print(' - Close < translate of affine > ...')
self.trans_cfg['translate'] = 0.0
if 'scale' in self.trans_cfg.keys():
print(' - Close < scale of affine >...')
self.trans_cfg['scale'] = [1.0, 1.0]
# build a new transform for second stage
print(' - Rebuild transforms ...')
self.train_transform, self.trans_cfg = build_transform(
args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
self.train_loader.dataset.transform = self.train_transform
def refine_targets(self, targets, min_box_size):
# rescale targets
for tgt in targets:
boxes = tgt["boxes"].clone()
labels = tgt["labels"].clone()
# refine tgt
tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
keep = (min_tgt_size >= min_box_size)
tgt["boxes"] = boxes[keep]
tgt["labels"] = labels[keep]
return targets
def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
"""
Deployed for Multi scale trick.
"""
if isinstance(stride, int):
max_stride = stride
elif isinstance(stride, list):
max_stride = max(stride)
# During training phase, the shape of input image is square.
old_img_size = images.shape[-1]
min_img_size = old_img_size * multi_scale_range[0]
max_img_size = old_img_size * multi_scale_range[1]
# Choose a new image size
new_img_size = random.randrange(min_img_size, max_img_size + max_stride, max_stride)
new_img_size = new_img_size // max_stride * max_stride # size
if new_img_size / old_img_size != 1:
# interpolate
images = torch.nn.functional.interpolate(
input=images,
size=new_img_size,
mode='bilinear',
align_corners=False)
# rescale targets
for tgt in targets:
boxes = tgt["boxes"].clone()
labels = tgt["labels"].clone()
boxes = torch.clamp(boxes, 0, old_img_size)
# rescale box
boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
# refine tgt
tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
keep = (min_tgt_size >= min_box_size)
tgt["boxes"] = boxes[keep]
tgt["labels"] = labels[keep]
return images, targets, new_img_size
# Build Trainer
def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
# ----------------------- Det trainers -----------------------
if model_cfg['trainer_type'] == 'yolo':
return YoloTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
elif model_cfg['trainer_type'] == 'yolox':
return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
else:
raise NotImplementedError(model_cfg['trainer_type'])