-
Notifications
You must be signed in to change notification settings - Fork 53
/
demo.py
267 lines (224 loc) · 9.53 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import argparse
import os
import numpy as np
import cv2
import time
import torch
from data.coco2017 import coco_class_index, coco_class_labels
from data import config, BaseTransform
def parse_args():
parser = argparse.ArgumentParser(description='YOLO Demo Detection')
# basic
parser.add_argument('--mode', default='image',
type=str, help='Use the data from image, video or camera')
parser.add_argument('-size', '--input_size', default=416, type=int,
help='input_size')
parser.add_argument('--cuda', action='store_true', default=False,
help='Use cuda')
parser.add_argument('--path_to_img', default='data/demo/images/',
type=str, help='The path to image files')
parser.add_argument('--path_to_vid', default='data/demo/videos/',
type=str, help='The path to video files')
parser.add_argument('--path_to_save', default='det_results/',
type=str, help='The path to save the detection results')
parser.add_argument('-vs', '--visual_threshold', default=0.3,
type=float, help='visual threshold')
# model
parser.add_argument('-v', '--version', default='yolo_v2',
help='yolov2_d19, yolov2_r50, yolov2_slim, yolov3, yolov3_spp, yolov3_tiny')
parser.add_argument('--conf_thresh', default=0.1, type=float,
help='NMS threshold')
parser.add_argument('--nms_thresh', default=0.45, type=float,
help='NMS threshold')
parser.add_argument('--trained_model', default='weights/',
type=str, help='Trained state_dict file path to open')
return parser.parse_args()
def plot_bbox_labels(img, bbox, label, cls_color, test_scale=0.4):
x1, y1, x2, y2 = bbox
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
t_size = cv2.getTextSize(label, 0, fontScale=1, thickness=2)[0]
# plot bbox
cv2.rectangle(img, (x1, y1), (x2, y2), cls_color, 2)
# plot title bbox
cv2.rectangle(img, (x1, y1-t_size[1]), (int(x1 + t_size[0] * test_scale), y1), cls_color, -1)
# put the test on the title bbox
cv2.putText(img, label, (int(x1), int(y1 - 5)), 0, test_scale, (0, 0, 0), 1, lineType=cv2.LINE_AA)
return img
def visualize(img, bboxes, scores, cls_inds, class_colors, vis_thresh=0.3):
ts = 0.4
for i, bbox in enumerate(bboxes):
if scores[i] > vis_thresh:
cls_color = class_colors[int(cls_inds[i])]
cls_id = coco_class_index[int(cls_inds[i])]
mess = '%s: %.2f' % (coco_class_labels[cls_id], scores[i])
img = plot_bbox_labels(img, bbox, mess, cls_color, test_scale=ts)
return img
def detect(net,
device,
transform,
vis_thresh,
mode='image',
path_to_img=None,
path_to_vid=None,
path_to_save=None):
# class color
class_colors = [(np.random.randint(255),
np.random.randint(255),
np.random.randint(255)) for _ in range(80)]
save_path = os.path.join(path_to_save, mode)
os.makedirs(save_path, exist_ok=True)
# ------------------------- Camera ----------------------------
if mode == 'camera':
print('use camera !!!')
cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
while True:
ret, frame = cap.read()
if ret:
if cv2.waitKey(1) == ord('q'):
break
img_h, img_w = frame.shape[:2]
scale = np.array([[img_w, img_h, img_w, img_h]])
# prepare
x = torch.from_numpy(transform(frame)[0][:, :, ::-1]).permute(2, 0, 1)
x = x.unsqueeze(0).to(device)
# inference
t0 = time.time()
bboxes, scores, cls_inds = net(x)
t1 = time.time()
print("detection time used ", t1-t0, "s")
# rescale
bboxes *= scale
frame_processed = visualize(img=frame,
bboxes=bboxes,
scores=scores,
cls_inds=cls_inds,
class_colors=class_colors,
vis_thresh=vis_thresh)
cv2.imshow('detection result', frame_processed)
cv2.waitKey(1)
else:
break
cap.release()
cv2.destroyAllWindows()
# ------------------------- Image ----------------------------
elif mode == 'image':
for i, img_id in enumerate(os.listdir(path_to_img)):
img = cv2.imread(path_to_img + '/' + img_id, cv2.IMREAD_COLOR)
img_h, img_w = img.shape[:2]
scale = np.array([[img_w, img_h, img_w, img_h]])
# prepare
x = torch.from_numpy(transform(img)[0][:, :, ::-1]).permute(2, 0, 1)
x = x.unsqueeze(0).to(device)
# inference
t0 = time.time()
bboxes, scores, cls_inds = net(x)
t1 = time.time()
print("detection time used ", t1-t0, "s")
# rescale
bboxes *= scale
img_processed = visualize(img=img,
bboxes=bboxes,
scores=scores,
cls_inds=cls_inds,
class_colors=class_colors,
vis_thresh=vis_thresh)
cv2.imshow('detection', img_processed)
cv2.imwrite(os.path.join(save_path, str(i).zfill(6)+'.jpg'), img_processed)
cv2.waitKey(0)
# ------------------------- Video ---------------------------
elif mode == 'video':
video = cv2.VideoCapture(path_to_vid)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
save_size = (640, 480)
save_path = os.path.join(save_path, 'det.avi')
fps = 15.0
out = cv2.VideoWriter(save_path, fourcc, fps, save_size)
while(True):
ret, frame = video.read()
if ret:
# ------------------------- Detection ---------------------------
img_h, img_w = frame.shape[:2]
scale = np.array([[img_w, img_h, img_w, img_h]])
# prepare
x = torch.from_numpy(transform(frame)[0][:, :, ::-1]).permute(2, 0, 1)
x = x.unsqueeze(0).to(device)
# inference
t0 = time.time()
bboxes, scores, cls_inds = net(x)
t1 = time.time()
print("detection time used ", t1-t0, "s")
# rescale
bboxes *= scale
frame_processed = visualize(img=frame,
bboxes=bboxes,
scores=scores,
cls_inds=cls_inds,
class_colors=class_colors,
vis_thresh=vis_thresh)
frame_processed_resize = cv2.resize(frame_processed, save_size)
out.write(frame_processed_resize)
cv2.imshow('detection', frame_processed)
cv2.waitKey(1)
else:
break
video.release()
out.release()
cv2.destroyAllWindows()
def run():
args = parse_args()
# use cuda
if args.cuda:
device = torch.device("cuda")
else:
device = torch.device("cpu")
# model
model_name = args.version
print('Model: ', model_name)
# load model and config file
if model_name == 'yolov2_d19':
from models.yolov2_d19 import YOLOv2D19 as yolo_net
cfg = config.yolov2_d19_cfg
elif model_name == 'yolov2_r50':
from models.yolov2_r50 import YOLOv2R50 as yolo_net
cfg = config.yolov2_r50_cfg
elif model_name == 'yolov2_slim':
from models.yolov2_slim import YOLOv2Slim as yolo_net
cfg = config.yolov2_slim_cfg
elif model_name == 'yolov3':
from models.yolov3 import YOLOv3 as yolo_net
cfg = config.yolov3_d53_cfg
elif model_name == 'yolov3_spp':
from models.yolov3_spp import YOLOv3Spp as yolo_net
cfg = config.yolov3_d53_cfg
elif model_name == 'yolov3_tiny':
from models.yolov3_tiny import YOLOv3tiny as yolo_net
cfg = config.yolov3_tiny_cfg
else:
print('Unknown model name...')
exit(0)
input_size = [args.input_size, args.input_size]
# build model
anchor_size = cfg['anchor_size_coco']
net = yolo_net(device=device,
input_size=input_size,
num_classes=80,
trainable=False,
conf_thresh=args.conf_thresh,
nms_thresh=args.nms_thresh,
anchor_size=anchor_size)
# load weight
net.load_state_dict(torch.load(args.trained_model, map_location=device))
net.to(device).eval()
print('Finished loading model!')
# run
detect(net=net,
device=device,
transform=BaseTransform(input_size),
mode=args.mode,
path_to_img=args.path_to_img,
path_to_vid=args.path_to_vid,
path_to_save=args.path_to_save,
thresh=args.visual_threshold
)
if __name__ == '__main__':
run()