-
Notifications
You must be signed in to change notification settings - Fork 12
/
tensorflow_example.py
485 lines (424 loc) · 20.6 KB
/
tensorflow_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
"""
based on cleverhans' cifar10_tutorial_tf except that it uses Madry's wide-ResNet
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import logging
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import flags
import time
from cleverhans.attacks import MadryEtAl, CarliniWagnerL2
from cleverhans.augmentation import random_horizontal_flip, random_shift
from cleverhans.dataset import CIFAR10
from cleverhans.loss import CrossEntropy
from cleverhans.model_zoo.all_convolutional import ModelAllConvolutional
from cleverhans.model_zoo.madry_lab_challenges.cifar10_model import make_wresnet as ResNet
from cleverhans.utils_tf import initialize_uninitialized_global_variables
from cleverhans.train import train
from cleverhans.utils import AccuracyReport, set_log_level
from cleverhans.utils_tf import tf_model_load, model_eval
from cleverhans.evaluation import batch_eval
import math
import tqdm
import os
import tf_robustify
from tensorboardX import SummaryWriter
import pickle
FLAGS = flags.FLAGS
NB_EPOCHS = 6
BATCH_SIZE = 128
LEARNING_RATE = 0.001
CLEAN_TRAIN = True
BACKPROP_THROUGH_ATTACK = False
NB_FILTERS = 64
ARCHITECTURE = 'ResNet'
LOAD_MODEL = True
os.makedirs('logs', exist_ok=True)
swriter = SummaryWriter('logs')
def cifar10_tutorial(
train_start=0,
train_end=60000,
test_start=0,
test_end=10000,
nb_epochs=NB_EPOCHS,
batch_size=BATCH_SIZE,
architecture=ARCHITECTURE,
load_model=LOAD_MODEL,
ckpt_dir='None',
learning_rate=LEARNING_RATE,
clean_train=CLEAN_TRAIN,
backprop_through_attack=BACKPROP_THROUGH_ATTACK,
nb_filters=NB_FILTERS,
num_threads=None,
label_smoothing=0.):
"""
CIFAR10 cleverhans tutorial
:param train_start: index of first training set example
:param train_end: index of last training set example
:param test_start: index of first test set example
:param test_end: index of last test set example
:param nb_epochs: number of epochs to train model
:param batch_size: size of training batches
:param learning_rate: learning rate for training
:param clean_train: perform normal training on clean examples only
before performing adversarial training.
:param backprop_through_attack: If True, backprop through adversarial
example construction process during
adversarial training.
:param label_smoothing: float, amount of label smoothing for cross entropy
:return: an AccuracyReport object
"""
# Object used to keep track of (and return) key accuracies
report = AccuracyReport()
# Set TF random seed to improve reproducibility
tf.set_random_seed(int(time.time() * 1000) % 2**31)
np.random.seed(int(time.time() * 1001) % 2**31)
# Set logging level to see debug information
set_log_level(logging.DEBUG)
# Create TF session
if num_threads:
config_args = dict(intra_op_parallelism_threads=1)
else:
config_args = {}
sess = tf.Session(config=tf.ConfigProto(**config_args))
# Get CIFAR10 data
data = CIFAR10(train_start=train_start, train_end=train_end,
test_start=test_start, test_end=test_end)
dataset_size = data.x_train.shape[0]
dataset_train = data.to_tensorflow()[0]
dataset_train = dataset_train.map(
lambda x, y: (random_shift(random_horizontal_flip(x)), y), 4)
dataset_train = dataset_train.batch(batch_size)
dataset_train = dataset_train.prefetch(16)
x_train, y_train = data.get_set('train')
pgd_train = None
if FLAGS.load_pgd_train_samples:
pgd_path = os.path.expanduser('~/data/advhyp/{}/samples'.format(FLAGS.load_pgd_train_samples))
x_train = np.load(os.path.join(pgd_path, 'train_clean.npy'))
y_train = np.load(os.path.join(pgd_path, 'train_y.npy'))
pgd_train = np.load(os.path.join(pgd_path, 'train_pgd.npy'))
if x_train.shape[1] == 3:
x_train = x_train.transpose((0, 2, 3, 1))
pgd_train = pgd_train.transpose((0, 2, 3, 1))
if len(y_train.shape) == 1:
y_tmp = np.zeros((len(y_train), np.max(y_train)+1), y_train.dtype)
y_tmp[np.arange(len(y_tmp)), y_train] = 1.
y_train = y_tmp
x_test, y_test = data.get_set('test')
pgd_test = None
if FLAGS.load_pgd_test_samples:
pgd_path = os.path.expanduser('~/data/advhyp/{}/samples'.format(FLAGS.load_pgd_test_samples))
x_test = np.load(os.path.join(pgd_path, 'test_clean.npy'))
y_test = np.load(os.path.join(pgd_path, 'test_y.npy'))
pgd_test = np.load(os.path.join(pgd_path, 'test_pgd.npy'))
if x_test.shape[1] == 3:
x_test = x_test.transpose((0, 2, 3, 1))
pgd_test = pgd_test.transpose((0, 2, 3, 1))
if len(y_test.shape) == 1:
y_tmp = np.zeros((len(y_test), np.max(y_test)+1), y_test.dtype)
y_tmp[np.arange(len(y_tmp)), y_test] = 1.
y_test = y_tmp
train_idcs = np.arange(len(x_train))
np.random.shuffle(train_idcs)
x_train, y_train = x_train[train_idcs], y_train[train_idcs]
if pgd_train is not None:
pgd_train = pgd_train[train_idcs]
test_idcs = np.arange(len(x_test))[:FLAGS.test_size]
np.random.shuffle(test_idcs)
x_test, y_test = x_test[test_idcs], y_test[test_idcs]
if pgd_test is not None:
pgd_test = pgd_test[test_idcs]
# Use Image Parameters
img_rows, img_cols, nchannels = x_test.shape[1:4]
nb_classes = y_test.shape[1]
# Define input TF placeholder
x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols,
nchannels))
y = tf.placeholder(tf.float32, shape=(None, nb_classes))
# Train an MNIST model
train_params = {
'nb_epochs': nb_epochs,
'batch_size': batch_size,
'learning_rate': learning_rate
}
eval_params = {'batch_size': batch_size}
pgd_params = {
# ord: ,
'eps': FLAGS.eps,
'eps_iter': (FLAGS.eps / 5),
'nb_iter': 10,
'clip_min': 0,
'clip_max': 255
}
cw_params = {
'binary_search_steps': FLAGS.cw_search_steps,
'max_iterations': FLAGS.cw_steps, #1000
'abort_early': True,
'learning_rate': FLAGS.cw_lr,
'batch_size': batch_size,
'confidence': 0,
'initial_const': FLAGS.cw_c,
'clip_min': 0,
'clip_max': 255
}
# Madry dosen't divide by 255
x_train *= 255
x_test *= 255
if pgd_train is not None:
pgd_train *= 255
if pgd_test is not None:
pgd_test *= 255
print('x_train amin={} amax={}'.format(np.amin(x_train), np.amax(x_train)))
print('x_test amin={} amax={}'.format(np.amin(x_test), np.amax(x_test)))
print('clip_min : {}, clip_max : {} >> CHECK WITH WHICH VALUES THE CLASSIFIER WAS PRETRAINED !!! <<'
.format(pgd_params['clip_min'], pgd_params['clip_max']))
rng = np.random.RandomState() # [2017, 8, 30]
debug_dict = dict() if FLAGS.save_debug_dict else None
def do_eval(preds, x_set, y_set, report_key, is_adv=None, predictor=None, x_adv=None):
if predictor is None:
acc = model_eval(sess, x, y, preds, x_set, y_set, args=eval_params)
else:
do_eval(preds, x_set, y_set, report_key, is_adv=is_adv)
if x_adv is not None:
x_set_adv, = batch_eval(sess, [x], [x_adv], [x_set], batch_size=batch_size)
assert x_set.shape == x_set_adv.shape
x_set = x_set_adv
n_batches = math.ceil(x_set.shape[0] / batch_size)
p_set, p_det = np.concatenate([predictor.send(x_set[b*batch_size:(b+1)*batch_size]) for b in tqdm.trange(n_batches)]).T
acc = np.equal(p_set, y_set[:len(p_set)].argmax(-1)).mean()
# if is_adv:
# import IPython ; IPython.embed() ; exit(1)
if FLAGS.save_debug_dict:
debug_dict['x_set'] = x_set
debug_dict['y_set'] = y_set
ddfn = 'logs/debug_dict_{}.pkl'.format('adv' if is_adv else 'clean')
if not os.path.exists(ddfn):
with open(ddfn, 'wb') as f:
pickle.dump(debug_dict, f)
debug_dict.clear()
if is_adv is None:
report_text = None
elif is_adv:
report_text = 'adversarial'
else:
report_text = 'legitimate'
if report_text:
print('Test accuracy on %s examples %s: %0.4f' % (report_text, 'with correction' if predictor is not None else 'without correction', acc))
if is_adv is not None:
label = 'test_acc_{}_{}'.format(report_text, 'corrected' if predictor else 'uncorrected')
swriter.add_scalar(label, acc)
if predictor is not None:
detect = np.equal(p_det, is_adv).mean()
label = 'test_det_{}_{}'.format(report_text, 'corrected' if predictor else 'uncorrected')
print(label, detect)
swriter.add_scalar(label, detect)
label = 'test_dac_{}_{}'.format(report_text, 'corrected' if predictor else 'uncorrected')
swriter.add_scalar(label, np.equal(p_set, y_set[:len(p_set)].argmax(-1))[np.equal(p_det, is_adv)].mean())
return acc
if clean_train:
if architecture == 'ConvNet':
model = ModelAllConvolutional('model1', nb_classes, nb_filters,
input_shape=[32, 32, 3])
elif architecture == 'ResNet':
model = ResNet(scope='ResNet')
else:
raise Exception('Specify valid classifier architecture!')
preds = model.get_logits(x)
loss = CrossEntropy(model, smoothing=label_smoothing)
if load_model:
model_name = 'naturally_trained'
if FLAGS.load_adv_trained:
model_name = 'adv_trained'
if ckpt_dir is not 'None':
ckpt = tf.train.get_checkpoint_state(os.path.join(
os.path.expanduser(ckpt_dir), model_name))
else:
ckpt = tf.train.get_checkpoint_state(
'./models/' + model_name)
ckpt_path = False if ckpt is None else ckpt.model_checkpoint_path
saver = tf.train.Saver(var_list=dict((v.name.split('/', 1)[1].split(':')[0], v) for v in tf.global_variables()))
saver.restore(sess, ckpt_path)
print('\nMODEL SUCCESSFULLY LOADED from : {}'.format(ckpt_path))
initialize_uninitialized_global_variables(sess)
else:
def evaluate():
do_eval(preds, x_test, y_test, 'clean_train_clean_eval', False)
train(sess, loss, None, None,
dataset_train=dataset_train, dataset_size=dataset_size,
evaluate=evaluate, args=train_params, rng=rng,
var_list=model.get_params())
logits_op = preds.op
while logits_op.type != 'MatMul':
logits_op = logits_op.inputs[0].op
latent_x_tensor, weights = logits_op.inputs
logits_tensor = preds
nb_classes = weights.shape[-1].value
if not FLAGS.save_pgd_samples:
noise_eps = FLAGS.noise_eps.split(',')
if FLAGS.noise_eps_detect is None:
FLAGS.noise_eps_detect = FLAGS.noise_eps
noise_eps_detect = FLAGS.noise_eps_detect.split(',')
if pgd_train is not None:
pgd_train = pgd_train[:FLAGS.n_collect]
if not FLAGS.passthrough:
predictor = tf_robustify.collect_statistics(x_train[:FLAGS.n_collect], y_train[:FLAGS.n_collect], x, sess, logits_tensor=logits_tensor, latent_x_tensor=latent_x_tensor, weights=weights, nb_classes=nb_classes, p_ratio_cutoff=FLAGS.p_ratio_cutoff, noise_eps=noise_eps, noise_eps_detect=noise_eps_detect, pgd_eps=pgd_params['eps'], pgd_lr=pgd_params['eps_iter'] / pgd_params['eps'], pgd_iters=pgd_params['nb_iter'], save_alignments_dir='logs/stats' if FLAGS.save_alignments else None, load_alignments_dir=os.path.expanduser('~/data/advhyp/madry/stats') if FLAGS.load_alignments else None, clip_min=pgd_params['clip_min'], clip_max=pgd_params['clip_max'], batch_size=batch_size, num_noise_samples=FLAGS.num_noise_samples, debug_dict=debug_dict, debug=FLAGS.debug, targeted=False, pgd_train=pgd_train, fit_classifier=FLAGS.fit_classifier, clip_alignments=FLAGS.clip_alignments, just_detect=FLAGS.just_detect)
else:
def _predictor():
_x = yield
while(_x is not None):
_y = sess.run(preds, {x: _x}).argmax(-1)
_x = yield np.stack((_y, np.zeros_like(_y)), -1)
predictor = _predictor()
next(predictor)
if FLAGS.save_alignments:
exit(0)
# Evaluate the accuracy of the model on clean examples
acc_clean = do_eval(preds, x_test, y_test, 'clean_train_clean_eval', False, predictor=predictor)
# Initialize the PGD attack object and graph
if FLAGS.attack == 'pgd':
pgd = MadryEtAl(model, sess=sess)
adv_x = pgd.generate(x, **pgd_params)
elif FLAGS.attack == 'cw':
cw = CarliniWagnerL2(model, sess=sess)
adv_x = cw.generate(x, **cw_params)
elif FLAGS.attack == 'mean':
pgd = MadryEtAl(model, sess=sess)
mean_eps = FLAGS.mean_eps * FLAGS.eps
def _attack_mean(x):
x_many = tf.tile(x[None], (FLAGS.mean_samples, 1, 1, 1))
x_noisy = x_many + tf.random_uniform(x_many.shape, -mean_eps, mean_eps)
x_noisy = tf.clip_by_value(x_noisy, 0, 255)
x_pgd = pgd.generate(x_noisy, **pgd_params)
x_clip = tf.minimum(x_pgd, x_many + FLAGS.eps)
x_clip = tf.maximum(x_clip, x_many - FLAGS.eps)
x_clip = tf.clip_by_value(x_clip, 0, 255)
return x_clip
adv_x = tf.map_fn(_attack_mean, x)
adv_x = tf.reduce_mean(adv_x, 1)
preds_adv = model.get_logits(adv_x)
if FLAGS.save_pgd_samples:
for ds, y, name in ((x_train, y_train, 'train'), (x_test, y_test, 'test')):
train_batches = math.ceil(len(ds) / FLAGS.batch_size)
train_pgd = np.concatenate([sess.run(adv_x, {x: ds[b*FLAGS.batch_size:(b+1)*FLAGS.batch_size]}) for b in tqdm.trange(train_batches)])
np.save('logs/{}_clean.npy'.format(name), ds / 255.)
np.save('logs/{}_y.npy'.format(name), y)
train_pgd /= 255.
np.save('logs/{}_pgd.npy'.format(name), train_pgd)
exit(0)
# Evaluate the accuracy of the model on adversarial examples
if not FLAGS.load_pgd_test_samples:
acc_pgd = do_eval(preds_adv, x_test, y_test, 'clean_train_adv_eval', True, predictor=predictor, x_adv=adv_x)
else:
acc_pgd = do_eval(preds, pgd_test, y_test, 'clean_train_adv_eval', True, predictor=predictor)
swriter.add_scalar('test_acc_mean', (acc_clean + acc_pgd) / 2., 0)
print('Repeating the process, using adversarial training')
exit(0)
# Create a new model and train it to be robust to MadryEtAl
if architecture == 'ConvNet':
model2 = ModelAllConvolutional('model2', nb_classes, nb_filters,
input_shape=[32, 32, 3])
elif architecture == 'ResNet':
model = ResNet()
else:
raise Exception('Specify valid classifier architecture!')
pgd2 = MadryEtAl(model2, sess=sess)
def attack(x):
return pgd2.generate(x, **pgd_params)
loss2 = CrossEntropy(model2, smoothing=label_smoothing, attack=attack)
preds2 = model2.get_logits(x)
adv_x2 = attack(x)
if not backprop_through_attack:
# For some attacks, enabling this flag increases the cost of
# training, but gives the defender the ability to anticipate how
# the atacker will change their strategy in response to updates to
# the defender's parameters.
adv_x2 = tf.stop_gradient(adv_x2)
preds2_adv = model2.get_logits(adv_x2)
if load_model:
if ckpt_dir is not 'None':
ckpt = tf.train.get_checkpoint_state(os.path.join(
os.path.expanduser(ckpt_dir), 'adv_trained'))
else:
ckpt = tf.train.get_checkpoint_state('./models/adv_trained')
ckpt_path = False if ckpt is None else ckpt.model_checkpoint_path
assert ckpt_path and tf_model_load(
sess, file_path=ckpt_path), '\nMODEL LOADING FAILED'
print('\nMODEL SUCCESSFULLY LOADED from : {}'.format(ckpt_path))
initialize_uninitialized_global_variables(sess)
else:
def evaluate2():
# Accuracy of adversarially trained model on legitimate test inputs
do_eval(preds2, x_test, y_test, 'adv_train_clean_eval', False)
# Accuracy of the adversarially trained model on adversarial
# examples
do_eval(preds2_adv, x_test, y_test, 'adv_train_adv_eval', True)
# Perform and evaluate adversarial training
train(sess, loss2, None, None,
dataset_train=dataset_train, dataset_size=dataset_size,
evaluate=evaluate2, args=train_params, rng=rng,
var_list=model2.get_params())
# Evaluate model
do_eval(preds2, x_test, y_test, 'adv_train_clean_eval', False)
do_eval(preds2_adv, x_test, y_test, 'adv_train_adv_eval', True)
return report
def main(argv=None):
from cleverhans_tutorials import check_installation
check_installation(__file__)
cifar10_tutorial(nb_epochs=FLAGS.nb_epochs, batch_size=FLAGS.batch_size,
learning_rate=FLAGS.learning_rate,
clean_train=FLAGS.clean_train,
architecture=FLAGS.architecture,
load_model=FLAGS.load_model,
ckpt_dir=FLAGS.ckpt_dir,
backprop_through_attack=FLAGS.backprop_through_attack,
nb_filters=FLAGS.nb_filters,
test_end=FLAGS.test_size)
if __name__ == '__main__':
flags.DEFINE_integer('nb_filters', NB_FILTERS,
'Model size multiplier')
flags.DEFINE_integer('nb_epochs', NB_EPOCHS,
'Number of epochs to train model')
flags.DEFINE_integer('batch_size', BATCH_SIZE,
'Size of training batches')
flags.DEFINE_float('learning_rate', LEARNING_RATE,
'Learning rate for training')
flags.DEFINE_string('architecture', ARCHITECTURE,
'Architecture [ResNet, ConvNet]')
flags.DEFINE_bool('load_model', LOAD_MODEL, 'Load Pretrained Model')
flags.DEFINE_string('ckpt_dir', '~/models/advhyp/madry/models',
'ckpt_dir [path_to_checkpoint_dir]')
flags.DEFINE_bool('clean_train', CLEAN_TRAIN, 'Train on clean examples')
flags.DEFINE_bool('backprop_through_attack', BACKPROP_THROUGH_ATTACK,
('If True, backprop through adversarial example '
'construction process during adversarial training'))
flags.DEFINE_integer('n_collect', 10000, '')
flags.DEFINE_float('p_ratio_cutoff', .999, '')
flags.DEFINE_float('eps', 8., '')
flags.DEFINE_string('noise_eps', 'n18.0,n24.0,n30.0', '')
flags.DEFINE_string('noise_eps_detect', 'n30.0', '')
flags.DEFINE_bool('debug', False, 'for debugging')
flags.DEFINE_integer('test_size', 10000, '')
flags.DEFINE_bool('save_alignments', False, '')
flags.DEFINE_bool('load_alignments', False, '')
flags.DEFINE_integer('num_noise_samples', 256, '')
flags.DEFINE_integer('rep', 0, '')
flags.DEFINE_bool('save_debug_dict', False, '')
flags.DEFINE_bool('save_pgd_samples', False, '')
flags.DEFINE_string('load_pgd_train_samples', None, '')
flags.DEFINE_string('load_pgd_test_samples', None, '')
flags.DEFINE_bool('fit_classifier', True, '')
flags.DEFINE_bool('clip_alignments', True, '')
flags.DEFINE_string('attack', 'pgd', '')
flags.DEFINE_bool('passthrough', False, '')
flags.DEFINE_integer('cw_steps', 300, '')
flags.DEFINE_integer('cw_search_steps', 20, '')
flags.DEFINE_float('cw_lr', 1e-1, '')
flags.DEFINE_float('cw_c', 1e-4, '')
flags.DEFINE_bool('just_detect', False, '')
flags.DEFINE_integer('mean_samples', 16, '')
flags.DEFINE_float('mean_eps', .1, '')
flags.DEFINE_bool('load_adv_trained', False, '')
tf.app.run()