Skip to content

Latest commit

 

History

History
67 lines (52 loc) · 2.19 KB

README.rst

File metadata and controls

67 lines (52 loc) · 2.19 KB

n-body playground

Requires Python 3.5+. License: MIT

Components

  • Initial body config generator (from oscullating elements or state vectors);
  • Main simulation;
  • Analysis toolkit.

Simulation engines and methods

  • dummy: for testing only
    • dummy_method
  • naive: straightforward Python implementation without massive Numpy/Scipy usage
    • semi_explicit_euler
    • explicit_rk2
    • explicit_rk4
    • ralston
    • bogacki_shampine (TODO)
    • dormand_prince (TODO)
    • explicit_rk16 (TODO)
    • crank_nicolson (TODO)
    • adams_bashforth_2
    • adams_bashforth_5
    • velocity_verlet
    • ruth3
    • ruth4
  • scipy: uses scipy.integrate.solve_ivp
  • numpy (TODO): massive Numpy/Scipy usage
  • cython (TODO): cythonized integration loop
  • numba (TODO)
  • cpp (TODO): main loop in C++

Usage

Simulation parameters are set in a single YAML config file. See sample_configs/ for examples and description (TODO). Simulation name is the stem (filename without extension) of the config file, it is used in the intermediate file name generation.

To run simulation:

  1. Create YAML config (e.g. simulation.yaml)
  2. Run prepare_config.py, which will generate simulation.global and simulation.bodies.
  3. Run nbody.py (using simulation name as a parameter, here simulation), which will output to a directory simulation/.
  4. Do some analysis using plot.py (using simulation name as a parameter).

Issues and roadmap

  • Gather accuracy info: build energy error graphs for sample_configs/oscullating.yaml for different dt and methods.
  • Gather performance info: create a table with per-iteration speeds for each method.
  • Add plotting of effective oscullating elements for each body
  • Upgrade position plot to use oscullating element "smoothing" to produce nice plots when T is large but output_point_num is low.
  • More methods for naive engine.
  • Create a list of useful methods for other engines.
  • How numpy can be implemented?
  • Implement cython engine.
  • Better documentation
  • Tests