forked from hunkim/PyTorchZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
08_2_dataset_loade_logistic.py
83 lines (65 loc) · 2.55 KB
/
08_2_dataset_loade_logistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# References
# https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/01-basics/pytorch_basics/main.py
# http://pytorch.org/tutorials/beginner/data_loading_tutorial.html#dataset-class
from torch.utils.data import Dataset, DataLoader
from torch import nn, from_numpy, optim
import numpy as np
class DiabetesDataset(Dataset):
""" Diabetes dataset."""
# Initialize your data, download, etc.
def __init__(self):
xy = np.loadtxt('./data/diabetes.csv.gz',
delimiter=',', dtype=np.float32)
self.len = xy.shape[0]
self.x_data = from_numpy(xy[:, 0:-1])
self.y_data = from_numpy(xy[:, [-1]])
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.len
dataset = DiabetesDataset()
train_loader = DataLoader(dataset=dataset,
batch_size=32,
shuffle=True,
num_workers=2)
class Model(nn.Module):
def __init__(self):
"""
In the constructor we instantiate two nn.Linear module
"""
super(Model, self).__init__()
self.l1 = nn.Linear(8, 6)
self.l2 = nn.Linear(6, 4)
self.l3 = nn.Linear(4, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
"""
In the forward function we accept a Variable of input data and we must return
a Variable of output data. We can use Modules defined in the constructor as
well as arbitrary operators on Variables.
"""
out1 = self.sigmoid(self.l1(x))
out2 = self.sigmoid(self.l2(out1))
y_pred = self.sigmoid(self.l3(out2))
return y_pred
# our model
model = Model()
# Construct our loss function and an Optimizer. The call to model.parameters()
# in the SGD constructor will contain the learnable parameters of the two
# nn.Linear modules which are members of the model.
criterion = nn.BCELoss(reduction='sum')
optimizer = optim.SGD(model.parameters(), lr=0.1)
# Training loop
for epoch in range(2):
for i, data in enumerate(train_loader, 0):
# get the inputs
inputs, labels = data
# Forward pass: Compute predicted y by passing x to the model
y_pred = model(inputs)
# Compute and print loss
loss = criterion(y_pred, labels)
print(f'Epoch {epoch + 1} | Batch: {i+1} | Loss: {loss.item():.4f}')
# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()